OCR Maths M1

Mark Scheme Pack

2005 - 2014

PhysicsAndMathsTutor.com

1	(i)	<i>R</i> is smooth	B1	1	
	(ii)		M1		For resolving forces horizontally to
					obtain an equation in <i>T</i> (requires 3
					relevant terms and at least one force
		$T + T_{200}60^{\circ} - 1.620045^{\circ}$	A 1		resolved)
		$T + T \cos 00 = 1.0\cos 45$ Tension is 0.754 N AG	AI	2	
			Al	3	
	(111)		MI		For resolving forces vertically
					to obtain an equation for <i>m</i>
					(requires 3 relevant terms with
			A1 ft		both T and the 1.6 N force
		$mg = T\sin 60^\circ + 1.6\sin 45^\circ$			resolved)
					ft sin/cos mix from (ii)
		m = 0.182	A1	3	
					SR $m = T\sin 60^\circ + 1.6\sin 45^\circ$
					M1
					m = 1.78
					B1
		l.			
2	(i)		M1		For applying $F = ma$ (requires at least
					<i>ma</i> , <i>T</i> and air resistance in linear
			. 1		combination in at least one equation).
			AI		At least one equation with not more
		0.2g + T - 0.4 = 0.2a	A1		SR $0.2g - T - 0.4 = 0.2a$
		0.3g - T - 0.25 = 0.3a	A1	4	and $0.3g + T - 0.25 = 0.3a$
					B1
	(ii)		M1		For obtaining an equation in T
					or <i>a</i> only, either by eliminating
					<i>a</i> or <i>T</i> from the equations in (i)
					or by applying $F = ma$ to the
					complete system
		0.5g - 0.65 = 0.5a or $5T - 0.7 = 0$	A1 ft		For a correct equation in <i>a</i> only
					or T only
					ft opposite direction of T only
1	1	1			11 ······
		a = 8.5 and $T = 0.14$ (positive	A1	3	

3	(i)	Momentum before= $0.1 \times 4 - 0.2 \times 3$	B1		or Loss by $P = 0.1 \times 4 + 0.1u$
		Momentum after = -0.1u + 0.2(3.5 - u)	B 1		or Gain by $Q = 0.2(3.5 - u) + 0.2 \times 3$
		$0.1 \times 4 - 0.2 \times 3 =$ -0.1 <i>u</i> + 0.2(3.5 - <i>u</i>)	M1		For using the principle of conservation of momentum
		u = 3 (positive value only)	A1	4	
					SR If mgv used for momentum instead of mv, then u = 3 B1
	(ii)		M1		For using $v^2 = u^2 + 2as$ with $v = 0$ (either case) or equivalent equations
		$0 = 3^2 - 10s_1$ and $0 = 0.5^2 - 10s_2$	A1 ft		ft value of <i>u</i> from (i)
		0.9 + 0.025	M1		For using $PQ = s_1 + s_2$
		Distance is 0.925 m cao	A1	4	

	-				2
4	(i) a		M1		For using $s = ut + \frac{1}{2} at^2$ for the first stage
		$2 = 0.8u + \frac{1}{2}a(0.8)^2$	A1		
			M1		For obtaining another
		$8 = 2u + \frac{1}{2} a2^{2} \text{ or } 6 = 1.2(u + 0.8a) + \frac{1}{2} a(1.2)^{2} \text{ or } 6 = 1.2(2 \times 2 \div 0.8 - u) + \frac{1}{2} a(1.2)^{2}$	A1		equation in <i>u</i> and <i>a</i> with relevant values of velocity, displacement and time
			M1		For eliminating <i>a</i> or <i>u</i>
		u = 1.5	A1		C
		Acceleration is 2.5 ms^{-2}	A1	7	
	(i) β		M1		For using $s = vt - \frac{1}{2} at^2$ for the first stage
		$2 = 0.8v - \frac{1}{2} a(0.8)^2$	A1		6
			M1		For using $s = ut + \frac{1}{2} at^2$ for
					the second stage
		$6 = 1.2v + \frac{1}{2} a(1.2)^2$	A1		
			M1		For obtaining values of <i>a</i> and <i>v</i> and using $v = u + at$ for first stage to find <i>u</i>
		Acceleration is 2.5 ms ⁻² ($v =$	A1		6
		3.5)	A1	7	
		u = 1.5			
	(i) y	$2\div 0.8 \text{ ms}^{-1} \text{ and } 6\div 1.2 \text{ ms}^{-1}$	M1		For finding average speeds in both intervals
		$= 2.5 \text{ ms}^{-1} \text{ and } 5 \text{ms}^{-1}$	A1		
		$t_1 = 0.4$ and $t_2 = (0.8 +) 0.6$	B1		For finding mid-interval
		5 = 2.5 + a (1.4 - 0.4)	M1		times
					For using $v = u + at$
		A cooleration is 2.5 ms^{-2}	A 1		the mid interval times
l	l				uie iniu-initei vai tiines

	$2.5 = u + 2.5 \ge 0.4$ or $5 = u + 2.5 \ge 1.4$	M1		
	<i>u</i> = 1.5	A1	7	For using $v = u + at$ between t = 0 and one of the mid- interval times
(ii)	$2.5 = 9.8 \sin \alpha$ $\alpha = 14.8^{\circ}$	M1 A1ft	2	For using $(m)a = (m)g\sin\alpha$ ft value of acceleration

5	(i)		M1		For resolving forces on 4 vertically
3	(1)		1011		(2 torms)
					(Sterins)
		$F = 2 + 7\cos\alpha$	A1		
		F = 3.96 (may be implied)	A1		
		$N = 7 \sin \alpha$	M1		For resolving forces on A
					horizontally (2 terms)
		N = 6.72 (may be implied)	A1		j (,
		3.96 = μ 6.72	M1		For using $F = \mu N$
		Coefficient is 0.589 or 33/56 cao	A1	7	<i>c</i> ,
	(ii)	$T\cos\beta = 7\cos\alpha$	M1		For resolving forces at <i>P</i> vertically (2
					terms)
		$T\cos\beta = 7 \times 0.28$ (= 1.96 AG)	A1	2	
	(iii)		M1		For resolving forces on B
					vertically (2 terms)
		$T\cos\beta - mg = 0$	A1		
		Mass is 0.2 kg	A1	3	

6	$(\mathbf{i})(\mathbf{a})$	$V = P_{cos} 20^{\circ} - 0.04 \sigma$	P 1		
0	(1)(a)	$v = 1 \cos 20 = 0.04g$			For softing $V = 0$
		D = 0.417	IVI I		For setting $V = 0$
		P = 0.417	A1	3	
	(i)(b)	$R = P \sin 20^{\circ}$	M1		For using R = horizontal component of P
		Magnitude is 0.143 N	A1ft	2	ft value of P
	(i)(c)	0.143 = 0.04a	M1		For using Newton's second law
	(1)(0)	Acceleration is 3.57 ms^{-2}	A1ft	2	ft magnitude of the resultant
	(;;)	$R^2 = 0.08^2 \pm (0.04 \mathrm{g})^2$	M1		For using $R^2 - P^2 + W^2$
	(11)	$\mathbf{M} = 0.00 + (0.04g)$	A 1		1 of using K = I + W
		Magnitude is 0.400 N (or 0.40 or 0.4)	AI		
			M1		
		$\tan \theta = +/-0.04g/0.08 \text{ or}$	IVII		For using $\tan \theta = Y/X$ or
		$\tan(90^{\circ} - \theta) = +/-0.08/0.04g$			$\tan(90^{\circ} - \theta) = X/Y$
		Angle made with horizontal is			
		78.5° or 1.37 radians, or	A1		
		angle made with vertical is 11.5°			
		or 0.201 radians			
		Downwards or below	B1	5	Direction may alternatively be
		horizontal			shown clearly on a diagram or
		horizontai			siven of a bearing
					given as a bearing

7	(i)	¹ / ₂ 200×16 + 300× ¹ / ₂ (16 + 25)	M1		For using the idea that the area of the quadrilateral represents distance
		+ ½ 100×25 (=1600 + 6150 +	A1		
		1250)	A1	3	
		Distance is 9000m			
	(ii)	a = (0 - 25)/(600 - 500)	M1		For using the idea that gradient
					(= vel ÷ time) represents acceleration
		Deceleration is 0.25 ms ⁻²	A1	2	Or for using $v = u + at$
			N/1		Allow acceleration = -0.25 ms^{-2}
	(111)	Acceleration is $(1200t - 3t^2) \times 10^{-6}$	A1	2	For using $a(t) = v(t)$
	(iv)	0.25 – 0.2475 Amount is +/- 0.0025 ms ⁻²	M1 A1ft	2	For using 'ans(ii) $- a_Q(550) $ ' ft ans(ii) only
	(v)	$1200t - 3t^2 = 0$	M1		For solving $a_Q(t) = 0$ or for finding $a_Q(400)$
		t = (0 or) 400 AG	A1	2	Or for obtaining $a_Q(400) = 0$
	(vi)		M1		For correct method for $s_P(400)$
	` '	$\frac{1}{2}200 \times 16 + 200 \times \frac{1}{2}(16 + 22)$	A1		
		$s_{0}(t) = (200t^{3} - t^{4}/4) \times 10^{-6} (\pm C)$	M1		For using $s_Q(t) = \int v_Q dt$
		6400 - 5400	A1		For using correct limits and
			M1		finding
		Distance is 1000 m			$ s_{Q}(400) - s_{P}(400) $
			A1	6	

1	(:)	0.2a $T = 0.2a$ and	M1	1	Ear using Newton's second low (sither
I	(1)	0.3g - I = 0.3a and $T = 0.4a = 0.4a$	IVI I		For using Newton's second law (either
		1 - 0.4g = 0.4a	A 1		particle) condone 0.5ga,0.4ga and
			AI		(LHS)
					Boin correct. SK Accept $I - 0.5g =$
		0.1 = 0.7	M1		0.3a etc as correct only 11 consistent
		-0.1g = 0.7a		Г И Л	with a shown as upwards for P on c s
		a = -1.4	AI	[4]	$\operatorname{Gragram}_{T}$
		$\frac{3ee}{a} = \frac{1}{4}$			
	<i>(</i> ••)	$\frac{a1.4}{0 - 2.8t}$ 1/2 1/4t ²	M1		AG
	(11)	0 = 2.0t = 72 1.4t 0 = t(2.8 = 0.7t)	M1		
		0 = 1(2.0 - 0.7t) Time taken is 4 s	A1	[3]	For using $s = ut + \frac{1}{2}at^2$ with $s = 0$
		OR	211	[5]	Solving OE
		(0.3 + 0.4)a = (0.3 - 0.4)g	M2		From correct equation only
		(0.5 + 0.1)u = (0.5 - 0.1)g	A1		rion concer equation only
		a = -1.4	A1	[4]	For using $(m_1 + m_2)a = (m_1 - m_2)g$
		0 = 2.8 + -1.4t	M1	[]	No application of SR shown above
	(1)	t = 2.8/1.4	M1		AG
		Time taken is 4 s	A1	[3]	For using $y = u + at$ with $y = 0$
	(;;)			r. 1	Solve for t, and double or any other
	(11)				complete method for return time
	1	•			
2	(i)	$T\sin\alpha = 0.08 \text{ x } 1.25$	M1		Newton's second law condone cos,
	. /	= 0.1	A1	[2]	and
	(ii)	$T\cos\alpha = 0.08g$	M1		0.08g for mass but not part of
		_	A1		force
			M1		Resolving forces vertically, condone
		$T^2 = 0.1^2 + 0.784^2$ or $\alpha =$	A1		sin
		7.3°	A1	[5]	May be implied by $T^2 = 0.1^2 + 0.784^2$
		T = 0.79			For eliminating α or T
					$\alpha = 7.3^{\circ}$ or better
					Accept anything rounding to 0.79
	1	1	I		
3	(i)		M1		For using $a = dv/dt$
		a = 7.2 - 0.9t	A1		
			M1	5.43	For attempting to solve $a(t) = 0$
		T = 8	Al	[4]	
		See also special case in			
		appendix.	D1		
	(11)	v(1) = 28.8	ы		AG (From $1.2 \times 8 - 0.45 \times 8^{-1}$)
		See also special case in		[1]	
	(<u>appendix.</u>		[1]	
	(111)		M1		For using $s = vdt$
		$s = 3.6t^2 - 0.15t^3$ (+C)			• •
			DM1		For finding $s(T \text{ or } 31)$ or using limits
					(0) to T or (0) to 31 (dep on
		s = 153.6 (+C)	A1		integration)
		s at constant speed = 662.4	B1ft		Condone $+C$
		Displacement is 816 m	Alft	[6]	For using $(31 - \text{cv } T) \times 28.8$
				1.01	cv 153.6 + cv 662.4 (non-zero
1	1			1	numerical)

Mark Scheme

4	(i)	$F = 12\cos 15^{\circ}$	M1	Resolve ho	rizontally (condone
		Frictional component is 11.6 N	A1 [2]	Sin)	0.0515°
	(ii)	$N + 12\sin 15^\circ = 2\sigma$	M1	Resolve ver	rt 3 forces (accept
	(11)		1,11	cos)	te o Torees (accept
		Normal component is 16.5 N	A1 [2]	AG	
	(iii)	$11.591 = \mu 16.494$	M1	For using c	$v F = \mu cv N$
		Coefficient is 0.7(0)	A1ft [2]	Ft cv F to 2	$\mu = 0.7027$
	(iv)	N=2g	B1		· · · · · · · · · · · · · · · · · · ·
		$F = 19.6 \times 0.7027$	M1		
			M1	For using N	lewton's second law
		20 - 13.773 = 2a	A1ft	cv Tractive	- cv Friction (e.g.
			A 1 577	from (i))	2 1 1 2 1 2 1
		Acceleration is 3.11 ms ⁻	AI [5]	Accept eith	er 3.11 or 3.12 only
		MISKEAD (Onnts nonzontar)	MIK-1	Subtract "N	Inarks now it.
				or final A1	(not A1ft in main
		$N = 2g - 20\sin 15$	B1ft	scheme).	
		F = 0.7027 x 14.4	M1	Equals 14.4	2
			M1	Equals 10.1	
		$20\cos 15 - 10.14 = 2a$	Alft	For using N	lewton's second law
		Acceleration is 4.59 ms ⁻	Alft [4]	cv Tractive	- cv Friction $4.6(0)$
				Accept 4.5	9, 4.0(0)
5	(i)		Graph with 5		'Wait' line
	~ /		straight line		segment may not
			segments and		be distinguishable
			with <i>v</i> single		from part of the <i>t</i>
		/v(m/s)	valued.	B1	axis. Attempt at all
					fully straight
			Line segment		Mainly straight
			for car stage	B1	ends on <i>t</i> -axis
			Line segment		Horizontal below
			for walk	B1	t-axis. Ignore
			stage		linking to axis.
			Line segment		Can be implied by
		t(S)	for wait stage		gap between walk
				B1	stages
			2 line		Inverted V not U.
			segments for		mainly straight.
			motor-cycle	B1	Condone vertex
			stage	[5]	below <i>x</i> intercept.
	(ii)	d = 12/8		M1	Using gradient
		Deceleration is 1.5 ms^{-2}		$\Delta 1$ [2]	Or $a = -1.5 \text{ ms}^{-2}$
	(iii)				Using area
	()			M1	represents
					displacement.
		$t_{\rm walk} = 420/0.7$		B1	Accept 600
		$t_{\rm motorcycle} = 42$		B1	Ignore method
		T = 8 + 600 + 250 + 42 = 900		A1 [4]	
		A		1	

Mark Scheme

6	(i)	$T_{\rm A} \cos \alpha - T_{\rm B} \cos \beta = W$	M1		For resolving 3 forces
					vertically, condone Wg, sin
		$T_{\rm A} = T_{\rm B} \ (=T)$	B1		May be implied or shown in
					diagram
		$\cos\alpha > \cos\beta \rightarrow \alpha < \beta$	A1	[3]	AG
	(ii)(a)	$T\sin\alpha + T\sin\beta = 14$	M1		Resolve 3 forces horiz accept
					cos
		$\sin \alpha = 0.6$ and $\sin \beta = 0.8$	DM1		
		Tension is 10 N	A1	[3]	
	(ii)(b)	$10\cos\alpha - 10\cos\beta = W$	M1		Must use cv T, and W (not Wg)
		$\alpha = 36.9^{\circ}, \ \beta = 53.1^{\circ}$	DM1		Or $\cos \alpha = 0.8$ and $\cos \beta = 0.6$
					SR -1 for assuming $\alpha + \beta = 90^{\circ}$
		W = 2	A1 ft	[3]	ft for <i>T</i> /5 (accept 1.99)
		See appendix for solution based			
		on resolving along RA and RB.			
	(iii)	<i>R</i> is below <i>B</i>	B1		Accept <i>R</i> more than 0.5 m
					below A
		Tension is 1 N	B1 ft	[2]	ft for <i>W</i> /2 accept <i>W</i> /2

7	(i)	Initial momentum -0.15×8	D1		(or loss in A's momentum = 0.15×8
		$= 0.15 \times 8 +$	Ы		0.13×8 B1
		Final momentum = $0.5v$	B1		and gain in B's momentum = $0.5(v-2)$
		$0.15 \times 8 + 0.5 \times 2 = 0.5v$ (or $0.15 \times 8 = 0.5 \times (v - 2)$)	M1		B1) For using the principle of
		$v = 4.4$ (m)gsin $\alpha = (\pm)(m)a$ $a = (\pm)4.9$ EITHER (see also part (ii)) $0 = 4.4^2 - 2 \times 4.9s$ $s = 1.97 \text{ or } 1.98 \text{ m}$	A1 M1 A1 M1 A1ft	[4]	conservation of momentum condone inclusion of g in all terms <i>SR</i> Awarded even if g in all terms Condone cos
		$OR v2 = 4.42 - 2 \times 4.9 \times 2 v2 = -0.24 OR (see also part (ii))$	M1 A1ft		For using $v^2 = u^2 + 2as$ with $v = 0$ Accept $s < 2$ iff $s = 4.4^2 / ($
		t = 4.4/4.9 (=0.898) with either $s = 4.4 \times 0.898$ -0.5 × 4.9 × 0.898^{2} or $s = (4.4 + 0)/2$ ×	M1		2×4.9) For using $v^2 = u^2 + 2as$ with $s =$
		0.898 s = 1.97 or 1.98 m	A1ft	[4]	$2 \\ \text{Accept } v^2 < 0$
					Both parts of method needed Accept $s < 2$
	(ii)	$2 = \frac{1}{2}4.9 t_{\rm A}^2$	M1		cv for acceleration
		$t_{\rm A} = 0.904$ <i>EITHER</i>	A1		Accept 0.903= <time=<0.904< th=""></time=<0.904<>
		$2 = (-4.4)t_{\rm B} + \frac{1}{2} 4.9t_{\rm B}^2$	M1		Appropriate use of $s = ut + \frac{1}{2}$
		$t_{\rm B} = (4.4! \oplus (4.4^2))$			<i>at</i> ² Correct method for solving
		$+4 \times 2.45 \times 2))/4.9$ t ₂ = 2.17	A1 A1		QE 2 171
		$t_{\rm B} = 2.17$ $t_{\rm B} \cdot t_{\rm A} = (2.17 - 0.9) = 1.27 \text{ s}$	111		2.1/1
		OR	M1		
		$t_{\rm up} = 4.4/4.9 \ (=0.898)$	M1		Or using s_{up} to find t_{up}
		$(2 + 1.98) = 0.5 \times 4.9 \times t_{\text{down}}^2$			$s = ut + \frac{1}{2} at^2$ with cv s in part
		$t_{\text{down}} = 1.27$ $t_{\text{B}} \cdot t_{\text{A}} = (0.9 + 1.27 - 0.9) = 1.27s$	AI		Not the final answer
		$0 = 4.4t - \frac{1}{2} 4.9t^2$ (i.e. approx 1.8 s to return to	M1		$s = ut + \frac{1}{2}at^2$ with $s = 0 = 1.796$
		start)	M1		5 - ni + 72 ni with $5 - 0 - 1.790$
		$2 = 4.4t + 4.9t^{2}$	A1		
		t = 0.376	A1	[5]	
		$t_{\rm B} \cdot t_{\rm A} = 1.796 + 0.376 - 0.9 = 1.27 {\rm s}$			

1		Momentum before = $3M$ -	B1		Ignore g if included; accept
-		1200×3			inconsistent directions
		Momentum after = 1200×5	B1		
					(or loss of momentum of
					loaded wagon = $3M$
					B1
					gain of momentum of
					unloaded wagon = $1200(5 + 3)$
					B1)
		3M - 3600 = 6000	M1		Equation with all terms; accept
					with g
		3(1200 + m) - 3600 = 6000	A1		For any correct equation in <i>m</i> ,
					Μ
		<i>m</i> = 2000	A1	5	
2	(i)		M1		For resolving forces in the i
					direction or for relevant use of
			• •		trigonometry
		$2.5 = 6.5 \sin \theta$	A1		
		$\theta = 22.6^{\circ}$	A1	3	AG Accept verification
	(ii)		M1		For resolving forces in the j
					direction or for using
					Pythagoras or relevant
					trigonometry.
		$R = 6.5 \cos 22.6^{\circ}$	A1		
		<i>R</i> = 6	A1	3	

3	(i)		B1 B1 B1		Line segment <i>AB</i> (say) of +ve slope from origin Line segment <i>BC</i> (say) of steeper +ve slope and shorter time interval than those for <i>AB.</i> SR : If the straight line segments are joined by curves, this B1 mark is not awarded Line segment <i>CD</i> (say) of less steep slope compared with <i>BC</i> .
		Time intervals 80, 40, 40	B1 B1		(An (x, t) graph is accepted and the references to more/less steep are reversed.) May be implied; any 2 correct
	(ii)	Line joining (0, 0) and (160,	B1 ft	6	
	(iii)	v = 360/160	M1		Woman's velocity (= 2.25)
			M1		For equation of man's
		s = 120 + 4.5(t - 80)	A1		interval
		2.25 <i>t</i>	M1		Accept omission of -80 Woman's displacement, awarded even if <i>t</i> is interpreted differently in man's
		$t = 106 \frac{2}{3}$ (107) SR Construction method	A1	5	expression Accept also 106.6, 106.7 but not 106
		Plotting points on graph paper <i>t</i> between 104 and 109 inclusive	M1 A1		Candidates reading the <u>displacement</u> intersection from graph, then dividing this distance by the woman's speed to find t , also get y = 360/160 M1 as above for
					the woman's velocity.
4	(i)	Displacement is 20 m	B1	1	20+c (from integration) B0
	(11)	$s(t) = 0.01t^3 - 0.15t^2 + 2t$	M1 A1		For using $s(t) = \int v(t)dt$ Can be awarded prior to
		(+ <i>A</i>) 10 – 15 + 20 + <i>A</i> = 20 Displacement is	M1		cancelling For using s(10) = cv (20)
		$0.01t^3 - 0.15t^2 + 2t + 5$	A1	4	AG
	(iii)	a = 0.06t - 0.3 0.06t - 0.3 = 0.6	M1 A1 DM1		For using $a(t) = dv/dt$ For starting solving $a(t) = 0.6$ depends on previous M1
		i = 15 Displacement is 35 m	B1	5	

5	(i)		M1		For using $F = 5$ and $F = \mu R$
		R = mg	M1		
		<i>m</i> = 2.55	A1	3	Accept 2.5 or 2.6
	(ii)a	$P\cos\alpha = 6$	B1		
			M1		For resolving vertically with 3
					distinct forces
		$R = P\sin\alpha + 25$	A1ft		Or $P \sin \alpha + (cv m)g$
		0.2R = 6	B1		For using $F = 6$ and $F = \mu R$.
					Can be implied by
					$0.2(P\sin \alpha + 25) = 6$
		$0.2(P\sin \alpha + 25) = 6$	M1		For an equation in
					$P \sin \alpha$ (=5) after elimination of
		$\alpha = 30.8^{\circ}$	۸1		R
	(ii)b	$\alpha = 59.0$ $P^2 = 6^2 \pm 5^2$	M1		Eor oliminating or substituting
	(II)D	F = 0 + 5			for α with α (6). Evidence is
		or $P \sin 39.8^\circ = 5$			needed that 5 is the value of
					$P \sin \alpha$ (rather than the original
					frictional force)
		<i>P</i> = 7.81	A1	8	Accept a r t 7.8
6	(i)	10500 + 3000 + 1500	M1		For summing 3 resistances
		Driving force below 15000	A1		Accept generalised case or
		gives retardation			specific instance
	(ii)	35000 – 15000 = 80000a	M1		Newton's second law for
				0	whole train
	()	Acceleration is 0.25 ms ⁻	A1	2	AG Accept verification
	(111)		IVIT		For applying Newton's second
					out of the relevant 3
		35000 - 10500 - 8500 =	A1		
		0.25 <i>m</i>			
		Mass is 64000 kg	A1	3	
	(iv)		M1		For applying Newton's second
					law with all appropriate forces
		-15000 - 15000 = 80000a	A1		a = -0.375
		OR (00000 (00000			
		-3000-10500-15000=(80000)			
		- III)a	М1		For applying Newton's second
			1011		law to B only, only 1 force
		-1500 = <i>ma</i>	A1		Or cv(<i>a</i>)
		Mass is 4000 kg	A1	5	
	(v)	$-15000 - 10500 \pm T$			Follow through $cv (m_E, a)$, or
		= 64000(-	B1ft		accept use of <i>m</i> _E , <i>a</i>
		0.375)			
		$I = \pm 1500 \rightarrow$ forward force	D 4	0	
		OR E OF 1500 N	BI	2	
		-1500 = 3000 + T			Follow through $c_{1}(m_{-}, a)$ or
		= (80000 - 64000)(-	B1ft		accept use of m_{-} a
		0.375)	B1		
		$T = \pm 1500 \rightarrow$ forward force			
		on <i>E</i> of 1500			

$a = (\mp)4ms^{-2}$ A1 $-mgsin15^{\circ} - F = ma$ M1 For applying Newton's second law with 2 forces $-0.1 \times 9.8 \sin 15^{\circ} - F = 0.1 \times (-100)$ A1 4) $R = 0.1 g \cos 15^{\circ}$ B1 $0.146357 \dots = \mu \, 0.946607$ For using $F = \mu R$ M1 . . . Coefficient is 0.155 A1 7 Anything between 0.15 and 0.16 inclusive $mgsin15^\circ > \mu mgcos15^\circ$ M1 For comparing weight (ii) component with frictional force (or tan $15^{\circ} > \mu$) (or tan 'angle of friction' with μ) → particle moves down 2 Awarded if conclusion is A1 correct even though values are wrong (iii) $(6 + 0) \div 2 = s \div 1.5$ M1 For using $(u + v) \div 2 = s \div t$ s = 4.5 A1 $mgsin15^{\circ} - F = ma$ For using Newton's second M1 law with 2 forces 0.25364 ... - 0.146357 ... = Values must be correct even if A1 0.1*a* not explicitly stated. Note that the correct value of friction may legitimately arise from a wrong value of μ and a wrong value of R $v^2 = 2(1.07285...)4.5$ For using $v^2 = 2as$ with any M1 value of a Speed is 3.11 ms⁻¹ A1 6 Accept anything rounding to 3.1 from correct working

Mark Scheme

June 2006

472	8
-----	---

Mark Scheme

		X = 5.88N	A1	3	
	(ii)	X = 0.3g + 0.3g	M1 A1ft	5	For resolving 3 relevant forces on B horizontally, a=0 Ft X = $0.3g + cv(\mu)$ cv(R)
		Coefficient is 0.75	M1	5	For using $F = \mu R$
		F = T $R = 0.4g$	B1 B1		Or $F = cv(T \text{ at particle})$ (or $T - F = 0.4a$)
3	(i)	T = 0.3g	B1		At particle (or $0.3g - T = 0.3a$)
	(iii)	Direction is that of the (+ve) x -axis	B1	1	Do not allow horizontal, 90° from vertical. Do not award if = 16.3 and =53.1 have been used.
		$x = 15 \times 0.96 - 11 \times 0.6$ Magnitude is 7.8N	AI A1	3	Allow use of $= 16.3$ and $= 53.1$ Accept 7.79, -7.8
	(ii)	-	M1		For resolving forces horizontally
		13 Component is zero AG	A1	4	SR 15sin + 11sin $-13 = 0$ gets M1A0A1ftA0
		$Y = 15 \times 0.28$ and 11×0.8 $Y = 15 \times 0.28 + 11 \times 0.8$	AI Alft		Allow use of $= 16.3$ and $= 53.1$ Ft cv(15 x 0.28 and 11x 0.8)
2	(i)	15 = 0.29 and $11 = 0.9$	M1		For resolving forces vertically
				-	
		0.8 Resistance is 520N	A1	3	
		$2100 - (R_{\rm C} + 220) = (1100 + 600)x$			
		1100 x 0.8 or			ft cv(220)
	(ii)	$2100 - 700 - R_{\rm C} =$	M1 A1ft		For applying Newton's second law to the car or to the whole, with a =+/- 0.8 (no vertical forces)
		700 - $R_T = 600 \ge 0.8$ Resistance is 220N	A1ft A1	4	ft cv (+/-(700 - R_T))
		+/-(/UU - K _T)	M1		For applying Newton's second law to the trailer with 2 terms on LHS (no vertical forces)
1	(i)	Net force on trailer is (700 P)	B1		

6	(i)	$\frac{1}{2} 25v_{\rm m} = 8 \text{ or}$ $\frac{1}{2}Tv_{\rm m} + \frac{1}{2}(25 - T)v_{\rm m} =$	B*1		Do not accept solution based on isosceles or right angled triangle
·					
		Displacement is 94.8m	A1		$\delta = 3.0 \text{ x} / = 14.4 \text{ x} / + 19.2 = 94.8 \text{ IIII MIAI}$
		19.2 + 75.6 = 94.8	M1		Adding two distinct stages OK $s = 3.6 \text{ y}^2 - 14.4 \text{ y}^2 + 19.2 - 94.8 \text{ final } M1.41$
		$s=3.6x3^2+14.4x3$	A1		(S=7.0.0) (UK S = 5.0 X/ - 14.4 X/ + 19.2) Adding two distinct stages OP
			M1		Substituting t = 3 (OR 7 into s = $3.6t^2 - 14.4t + 19.2$)
		t = 0, s = 0, k = 0			Nb t=4 with s=19.2 and v=7.2t-14.4 gives k=19.2
		$s = \int 7.2i \pm 14.4ii$			Integration and finding integration constant.
		$s = \int 7 2t \pm 1A A dt$			$s = \int 7.2t - 14.4dt$
		t = 0, v = 14.4, C = 14.4			Nb Using $t=4, v=14.4$ gives $c = -14.4$
		f = 0 $y = 14.4$ $z = -$	M1		Integration and finding non-zero integration constant
		$v = \int 7.2 dt$	D*		For finding v(4)
		OR	ЛІ	5	
		19.2 + 70.0 Displacement is 94.8 m	MI A1	5	For adding distances for the two distinct stages
		3^{2}	M1		For adding distances for the two distinct stars
		$s = 14.4 \text{ x } 3 + \frac{1}{2} 7.2 \text{ x}$	A1		(s = 75.6)
			M1		For using $s = ut + \frac{1}{2} x7.2t^2$ with non-zero u
		u = 0.7 A T	M1		$u = v(\tau)$
	(iii)	19.2m AG $u = 0.9 \times 4^2$	AI D*	4	For using 'u' $- v(4)$
		0.3 x 64	M1	4	For using limits 0 to 4 (or equivalent)
					given in (i), or +K included and limits used.
		$0.9t^{3}/3$ (+K)	A1		SR Award B1 for (s = 0, t = 0) K = 0 if not already
	(11)		MI		For using $s = \int v dt$
	(;;)	Expression is 1.8t ² /2	A1 M1	3	also for $1.8t^2 + c$
		(t = 0, v = 0) C = 0	B1		May be awarded in (ii). Accept c written and deleted.
5	(1)	$1.8t^{-}/2$ (+C)	M*1		For using $v = \int a dt$
=	(*)	$1.9t^2/2$ (+C)	M±1		6 -
		Speed is 1.21ms ⁻¹	A1	2	Positive. Accept (a.r.t) 1.2 from correct work
		(0.85) = 0.7v			
	(jj)(b)	arrection. $0.6x^2 - 0.7x^{0.5} (=$	A1ft		ft cy (0.85) . Award M1 if not given in ii(a)
		N must reverse its	A1	4	
		negative momentum.			
		particles have a			continue in their original directions.
		original direction, both			impossible scenario where M and N both might
		If N continues in its	1		No reference need be made to the physically
		<u>1 otal</u> momentum +ve	DM 1		Or $0.6v + 0.7w$ is positive, confirming that the momentum is shared between two particles
		Total is 0.85kgms ⁻¹	Al		Must be positive $O(0, 0, 0)$ be the positive confirming that the
	(ii)(a)	0.6x2 - 0.7x0.5	M1		Must be a difference. SR $0.6x1 - 0.7x0.5$ M1
		Speed is 1 lils	AI	4	Accept -1 from correct work (g not used).
		Speed is 1 ms ⁻¹	Δ1	Λ	even it g is included throughout $A_{ccent} = 1$ from correct work (g not used)
			M1		For using the principle of conservation of momentum
		$= +/-0.8v_L + 0.6 \ x \ 2$			Accept inclusion of g in both terms
		collision	ות		$0.6x^2 + 0.6x^2$
		$= +/-(0.8 \times 4 - 0.6 \times 2)$	D 1		Accept inclusion of g in both terms
		collision			$0.8x4 + - 0.8v_L$
4	(i)	Momentum before	B1		Or momentum change L

	8			
	Greatest speed is	D*B	2	
	0.64 ms ⁻¹	I		
	IIIS	M1		For using $y = y + at or the idea that gradient$
(11)		1011		represents acceleration $represents acceleration$
	V = 0.02 x 40	A1		
	V = 0.8	A1	3	
(iii)		M1		For using the idea that the area represents displacement. nb trapezium area is 16+8+8
		M1		For $A = \frac{1}{2} (L_1 + L_2)h$ or other appropriate breakdown
	$\frac{1}{2}(70 + T) \ge 0.8 = 40 - 1$	A1ft		$\frac{1}{2}(30 + T) \ge 0.8 = 40 - 8 - \frac{1}{2} \ge 40 \ge 0.8$ ft cv(0.8)
	8			
	Duration is 10s	A1	4	
(iv)		M1		For using $v = u + at$ or the idea that gradient represents acceleration
	0=0.8+a(30-10)	A1ft		ft $cv(10)$ and $cv(0.8)$
	Deceleration is 0.04ms ⁻²	A1	3	Accept -0.04 from correct work
	Or	M1		Using the idea that the area represents displacement.
	40-8- ¹ / ₂ x 40 x 0.8-	A1ft		Ft $cv(0.8 \text{ and } 10)$
	10x0.8	A1		Accept -0.04 from correct work. d=-0.04 A0
	=0.8(30-10)-a(30-			I I I I I I I I I I I I I I I I I I I
	$10)^{2}/2$			
	Deceleration is			
	0.04ms^{-2}			

7	(i)	$R = 0.5gcos40^{\circ}$	B1		R = 3.7536
		$F = 0.6 \text{ x } 0.5 \text{gcos} 40^{\circ}$	M1		For using $F = \mu R$
		Magnitude is 2.25N AG	A1	3	
	(ii)		M1		For applying Newton's second law (either case) //slope, two forces
		$-/+0.5gsin40^{\circ} - F = 0.5a$	A1		Either case
		(a) Acceleration is 	A1		Accept 10.8 from correct working (both forces have the same sign)
		(b) Acceleration is1.79ms⁻²	A1	4	Accept -1.79 from correct working (the forces have opposite sign) Accept ! 1.8(0)
	(iii)a)	$0 = 4 + (-10.8)T_1$	M1		Requires appropriate sign
		$T_1 = 0.370(3)$	A1		
	b)		M1		Accept 0.37
	U)		IVI I		highest point using a(up) with appropriate sign
		$0 = 4^2 + 2(-10.8)$ s or	A1		ft $a(up)$ and/or T_1
		$s = (0 + 4) \ge 0.37/2$ or	ft		(s = 0.7405)
		$s = 4(0.370) + \frac{1}{2}(-10.8)(0.270)^2$			
		10.8)(0.570)	M1		For method of finding time taken from highest point
			1111		to A and not using a(up)
		$0.7405 = \frac{1}{2} (1.79) T_2^2$	A1ft		ft a(down) and $cv(0.7405)$ (T ₂ = 0.908 approx)
		0.370 + 0.908	M1		Using $T = T_1 + T_2$ with different values for T_1 , T_2
		= 1.28s	A1	8	3 significant figures cao

1(i)	X = 5	B1	X=-5 B0. Both may be seen/implied in (ii)
	Y = 12	B1	No evidence for which value is X or Y available from (ii)
			award B1 for the pair of values 5 and 12 irrespective of
		[2]	order
(ii)	$R^2 = 5^2 + 12^2$	M1	For using $\mathbf{R}^2 = \mathbf{X}^2 + \mathbf{Y}^2$
(11)	$\mathbf{K} = 5^{\circ} + 12^{\circ}$ Magnitudo is 13 N	A 1	Allow 12 from $V = 5$
		AI M1	Allow 15 Holli Λ -5
	$\tan\theta = 12/5$	1/11	For using correct angle in a trig expression
	Angle is 67.4°	A1	SR: $p=14.9$ and $Q=11.4$ giving $R=13+/-0.1$ B2,
		[4]	Angle = 67.5+/-0.5 B2
2(i)	250 + 16 (200 - 250)	M1	Use of the ratio 12:12 (may be implied) or $y = y$ at
2(1)	230 + 72(290 - 230)	IVI I	Use of the ratio 12:12 (may be implied), of $v = u+at$
	t = 270	A1	
		[2]	
(ii)		M1	The idea that area represents displacement
(11)	$\frac{1}{2} \times \frac{10}{12} \times \frac{12}{10} \times \frac{12}{12} \times \frac{12}{10} \times \frac{12}{$	M1	Correct structure, is triangle $1 \pm \text{rectangle} 2 \pm \text{triangle} 3$
	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}$	1011	triangle/1 with triangle3 = triangle4 triangle1 +
	$\frac{72}{2}$		utalight with utalight $= utalight $, utalight $+$
	$\frac{1}{2} \frac{1}{2} \frac{1}$	A 1	rectanglez, trapezium & 2, etc
	Displacement is 2760m	AI	
(:::)	anna mista structura is triangle i	[3] M1	
(111)	appropriate <u>structure</u> , ie triangle +	MII	All terms positive
	rectangle + triangle + triangle ,		
	triangle $+$ rectangle $+$ 2triangle, etc		
	Distance is 3000m	A1	Treat candidate doing (ii) in (iii) and (iii) in (ii)
		[2]	as a mis-read.
3(1)		M1	An equation with R, T and 50 in linear combination.
	$R + Tsin72^{\circ} = 50g$	A1	R + 0.951T = 50g
		[2]	
(ii)	$T = 50g/sin72^{\circ}$	M1	Using $R = 0$ (may be implied) and $T\sin 72^\circ = 50(g)$
	T = 515 (AG)	A1	Or better
	T = mg	B1	
	m = 52.6	B1	Accept 52.5
		[4]	•
(iii)	$X = Tcos72^{\circ}$	B1	Implied by correct
			answer
	X = 159	B1	Or better
		[2]	
4(i)	In $Q4$ right to left may be used as the	M1	For using Momentum 'before' is zero
	positive sense throughout.		
	$0.18 \ge 2 - 3m = 0$	A1	
	m = 0.12	A1	
		[3]	3 marks possible if g included consistently
(iia)	Momentum after	B 1	
	= -0.18 x 1.5 + 1.5 m		
	$0.18 \ge 2 - 3m = -0.18 \ge 1.5 + 1.5m$	M1	For using conservation of momentum
	m = 0.14	A1	
		[3]	3 marks possible if g included consistently
(iib)	0.18 x 2 – 3m	B1ft	ft wrong momentum 'before'
	=(0.18+m)1.5		
	m = 0.02	B1	
	$0.18 \ge 2 - 3m = -(0.18 + m)1.5$	B1ft	
	m = 0.42	R1	
	m = 0.72	[4]	0 marks if a included
L		[+]	o marks ii g included

(i) $8.4^2 - 2gs_{max} = 0$ A1Height is 3.6m(AG)A1(ii)M1Using $u^2 = +/- 2g(ans(i) - 2)$ $u = 5.6$ A1(iii)EITHER (time when at same height)M1Using $s = ut + \frac{1}{2}at^2$ for P and for Q, $a = \frac{1}{-g}$, expressions for s terms must differ $s +/-2 = 8.4t - \frac{1}{2}gt^2$ andOr $8.4t (-\frac{1}{2}gt^2) = 5.6t (-\frac{1}{2}gt^2) +/-2$ $(s+/-2) = 5.6t - \frac{1}{2}gt^2$ A1Correct sign for g, $cv(5.6)$, $\frac{1}{-2}$ in only one equation $t = 5/7$ (0.714)A1caoM1Using $v = u$ + at for P and for Q, $a = \frac{1}{-g}$, $cv(t)$ $v_P = 1.4$ and $v_Q = -1.4$ A1Correct sign for g, $cv(5.6)$, candidates answer for t (including sign) $v_P = 1.4$ and $v_Q = -1.4$ A1Correct sign for g, $cv(5.6)$, candidates answer for t (including sign) $v_P = 1.4$ and $v_Q = -1.4$ A1Correct sign for g, $cv(5.6)$, candidates answer for t (including sign) $v_P = 1.4$ and $v_Q = -1.4$ A1Correct sign for g, $cv(5.6)$, $candidates answer for t (including sign)$ $v_P = 1.4$ and $v_Q = -1.4$ A1Correct sign for Q, $a = \frac{1}{-g}$	5(i)		M1	Using $v^2 = u^2 + 2gs$ with $v = 0$ or $u = 0$
Initial Height is 3.6m(AG)A1(ii)IIIUsing $u^2 = +/-2g(ans(i) - 2)$ $u = 5.6$ A1(iii)EITHER (time when at same height)M1Using $s = ut + \frac{1}{2}$ at ² for P and for Q, $a = +/-g$, expressions for s terms must differ $s+/-2 = 8.4t - \frac{1}{2}$ gt ² andOr $8.4t (-\frac{1}{2} gt^2) = 5.6t (-\frac{1}{2} gt^2) +/-2$ $(s+/-2) = 5.6t - \frac{1}{2} gt^2$ A1Correct sign for g, $cv(5.6)$, $+/-2$ in only one equation $t = 5/7$ (0.714)A1caoM1Using $v = u + at$ for P and for Q, $a = +/-g$, $cv(t)$ $v_P = 8.4 \cdot 0.714g$ and $v_Q = 5.6 \cdot 0.714g$ A1 $v_P = 1.4$ and $v_Q = -1.4$ A1(6)OR (time when at same speed in opposite directions)M1Using $v = u + at$ for P and for Q, $a = +/-g$	0(1)	$8.4^2 - 2gs_{max} = 0$	A1	
[3](ii)M1Using $u^2 = +/- 2g(ans(i) - 2)$ $u = 5.6$ A1[2](iii)EITHER (time when at same height)M1Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = \frac{1}{-g}$, expressions for s terms must differ $s +/-2 = 8.4t - \frac{1}{2} gt^2$ andOr $8.4t (-\frac{1}{2} gt^2) = 5.6t (-\frac{1}{2} gt^2) +/-2$ $(s+/-2) = 5.6t - \frac{1}{2} gt^2$ A1Correct sign for g, $cv(5.6)$, $\frac{1}{-2}$ in only one equation $t = 5/7$ (0.714)A1caoM1Using $v = u$ + at for P and for Q, $a = \frac{1}{-g}$, $cv(t)$ $v_P = 8.4 - 0.714g$ and $v_Q = 5.6 - 0.714g$ A1 cao [6]OR (time when at same speed in opposite directions)M1Using $v = u + at$ for P and for Q, $a = \frac{1}{-g}$		Height is 3.6m (AG)	A1	
(ii)M1Using $u^2 = +/- 2g(ans(i) - 2)$ $u = 5.6$ A1[2](iii)EITHER (time when at same height)M1Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = \frac{1}{-g}$, expressions for s terms must differ $s+/-2 = 8.4t - \frac{1}{2} gt^2$ andOr $8.4t (-\frac{1}{2} gt^2) = 5.6t (-\frac{1}{2} gt^2) +/- 2$ $(s+/-2) = 5.6t - \frac{1}{2} gt^2$ A1 $(s+/-2) = 5.6t - \frac{1}{2} gt^2$ A1 $t = 5/7$ (0.714) $u = 5.6 - 0.714g$ and $v_Q = 5.6 - 0.714g$ A1 $v_P = 8.4 - 0.714g$ and $v_Q = 5.6 - 0.714g$ A1 $v_P = 1.4$ and $v_Q = -1.4$ A1 cao [6]OR (time when at same speed in opposite directions)M1Using $v = u + at$ for P and for Q, $a = +/-g$			[3]	
$\begin{array}{c} \text{(iii)} & \text{EITHER (time when at same height)} \\ \text{(iii)} & \text{EITHER (time when at same height)} \\ \text{(iii)} & \text{EITHER (time when at same height)} \\ \text{(iii)} & \text{EITHER (time when at same height)} \\ \text{(iii)} & \text{IITHER (time when at same height)} \\ \text{(iii)} & \text{IITHER (time when at same height)} \\ \text{(iii)} & \text{IITHER (time when at same height)} \\ \text{(iii)} & \text{IITHER (time when at same height)} \\ \text{(iii)} & \text{IITHER (time when at same height)} \\ \text{(iii)} & \text{IITHER (time when at same height)} \\ \text{(iii)} & \text{IITHER (time when at same speed in opposite directions)} \\ \text{(iii)} & \text{IITHER (time when at same speed in opposite directions)} \\ \text{(iii)} & \text{IITHER (time when at same speed in opposite directions)} \\ \text{(iii)} & \text{IITHER (time when at same speed in opposite directions)} \\ \text{(iii)} & \text{IITHER (time when at same speed in opposite directions)} \\ \text{(iii)} & \text{(iiii)} & \text{(iii)} & \text{(iiii)} & \text{(iii)} & \text{(iiii)} & \text{(iiii)} & \text{(iiii)} & \text{(iii)} & \text{(iiii)} & \text{(iiii)} & \text{(iiii)} & \text{(iii)} & \text{(iii)} & \text{(iiii)} & \text{(iiii)} & \text{(iiii)} & \text{(iii)} & \text{(iii)} & \text{(iii)} & \text{(iiii)} & \text{(iii)} & (iii)$	(ii)		M1	Using $u^2 = +/-2g(ans(i) - 2)$
[2](iii)EITHER (time when at same height)M1Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = \frac{1}{-g}$, expressions for s terms must differ $s+/-2 = 8.4t - \frac{1}{2} gt^2$ and $(s+/-2) = 5.6t - \frac{1}{2} gt^2$ Or $8.4t (-\frac{1}{2} gt^2) = 5.6t (-\frac{1}{2} gt^2) + /-2$ $(s+/-2) = 5.6t - \frac{1}{2} gt^2$ A1Correct sign for g, $cv(5.6)$, $\frac{1}{-2}$ in only one equation t and $t = 5/7$ (0.714) $v_P = 8.4 - 0.714g$ and $v_Q = 5.6 - 0.714g$ A1cao $v_P = 1.4$ and $v_Q = -1.4$ A1cao $(6]$ OR (time when at same speed in opposite directions)M1Using $v = u + at$ for P and for Q, $a = \frac{1}{-g}$	(11)	u = 5.6	A1	
(iii)EITHER (time when at same height)M1Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = \frac{1}{-g}$, expressions for s terms must differ Or $8.4t (-\frac{1}{2} gt^2) = 5.6t (-\frac{1}{2} gt^2) + 2$ $s+/-2 = 8.4t - \frac{1}{2} gt^2$ and $(s+/-2) = 5.6t - \frac{1}{2} gt^2$ Or $8.4t (-\frac{1}{2} gt^2) = 5.6t (-\frac{1}{2} gt^2) + 2$ $(s+/-2) = 5.6t - \frac{1}{2} gt^2$ A1Correct sign for g, $cv(5.6)$, $+/-2$ in only one equation t aco M1 $t = 5/7$ (0.714) A1cao M1 $v_P = 8.4 - 0.714g$ and $v_Q = 5.6 - 0.714g$ A1Correct sign for g, $cv(5.6)$, candidates answer for t (including sign) $v_P = 1.4$ and $v_Q = -1.4$ A1cao [6]OR (time when at same speed in opposite directions)M1Using $v = u + at$ for P and for Q, $a = +/-g$			[2]	
(iii) Entries (the when at same neight) if it is complete to the value for Q, $u = 0$, Q , $u = 0$, u	(iii)	EITHER (time when at same height)	M1	Using s = ut + $\frac{1}{2}$ at ² for P and for O a = +/-g expressions for
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(111)			s terms must differ
$\begin{array}{cccc} \text{(s+/-2)} = 5.6t - \frac{1}{2} \text{ gt}^2 & \text{A1} & \text{Correct sign for g, } \text{cv}(5.6), +/-2 \text{ in only one equation} \\ \text{t} = 5/7 & (0.714) & \text{A1} & \text{cao} \\ \text{W}_{\text{P}} = 8.4 - 0.714 \text{g and } \text{v}_{\text{Q}} = 5.6 - 0.714 \text{g} & \text{A1} & \text{Correct sign for g, } \text{cv}(5.6), \text{ candidates answer for t (including sign)} \\ \text{v}_{\text{P}} = 1.4 \text{ and } \text{v}_{\text{Q}} = -1.4 & \text{A1} & \text{cao} \\ \text{[6]} & \text{OR (time when at same speed in opposite directions)} & \text{M1} & \text{Using } \text{v} = \text{u} + \text{at for P and for Q, a} = +/-\text{g} \end{array}$		$s+/-2 = 8.4t - \frac{1}{2} gt^2$ and		Or 8.4t $(-\frac{1}{2} \text{ gt}^2) = 5.6t (-\frac{1}{2} \text{ gt}^2) + \frac{1}{2}$
$t = 5/7 (0.714)$ $A1 cao$ $M1 Using v = u + at for P and for Q, a = +/-g, cv(t)$ $v_P = 8.4 - 0.714g \text{ and } v_Q = 5.6 - 0.714g$ $V_P = 1.4 and v_Q = -1.4$ $A1 cao$ $[6] OR (time when at same speed in opposite directions)$ $M1 Using v = u + at for P and for Q, a = +/-g$		$(8+/-2) = 5.6t - \frac{1}{2}gt^2$	A1	Correct sign for g. $cy(5.6)$, $+/-2$ in only one equation
$\begin{array}{cccc} & \text{M1} & \text{Using } v = u + at \text{ for P } and \text{ for Q, } a = +/-g, \text{ cv(t)} \\ & \text{M1} & \text{Using } v = u + at \text{ for P } and \text{ for Q, } a = +/-g, \text{ cv(t)} \\ & \text{N1} & \text{Correct sign for g, cv(5.6), candidates answer for t (including sign)} \\ & v_{\text{P}} = 1.4 \text{ and } v_{\text{Q}} = -1.4 & \text{A1} & \text{cao} \\ & & & & & & & & & & & & & & & & & & $		t = 5/7 (0.714)	A1	
$v_{P} = 8.4 - 0.714g \text{ and } v_{Q} = 5.6 - 0.714g$ $v_{P} = 1.4 \text{ and } v_{Q} = -1.4$ $OR \text{ (time when at same speed in opposite directions)}$ $M1 Using v = u + at \text{ for } P \text{ and for } Q, a = +/-g$			M1	Using $v = u$ +at for P and for $\Omega_{a} = \pm/-\sigma_{a} cv(t)$
$v_{P} = 1.4 \text{ and } v_{Q} = -1.4 \qquad \qquad \text{A1} \qquad \text{cao}$ $[6] \qquad \qquad \text{OR (time when at same speed in opposite directions)} \qquad \qquad \text{M1} \qquad \text{Using } v = u + at \text{ for } P \text{ and for } Q, a = +/-g$		$v_{\rm p} = 8.4 - 0.714$ g and $v_{\rm q} = 5.6 - 0.714$ g	A1	Correct sign for $g_{cv}(5.6)$ candidates answer for t (including
$v_{P} = 1.4 \text{ and } v_{Q} = -1.4$ $A1 cao$ $[6]$ OR (time when at same speed in opposite directions) $M1 Using v = u+at \text{ for } P \text{ and for } Q, a = +/-g$		vp=0.1 0.711g and vQ=5.0 0.711g	711	sign)
$\begin{bmatrix} 6 \end{bmatrix}$ $\begin{bmatrix} 6 \end{bmatrix}$ $\begin{bmatrix} 6 \end{bmatrix}$ $\begin{bmatrix} M1 \\ VQ = 1.4 \end{bmatrix}$ $\begin{bmatrix} 6 \end{bmatrix}$ $\begin{bmatrix} 6 \end{bmatrix}$ $\begin{bmatrix} M1 \\ VS = u + at \text{ for } P \text{ and for } Q, a = +/-g \end{bmatrix}$		$v_{\rm p} = 1.4$ and $v_{\rm q} = -1.4$	Δ1	
OR (time when at same speed in opposite directions) M1 Using $v = u+at$ for P and for Q, $a = +/-g$		$v_p = 1.4$ and $v_Q = 1.4$	[6]	cuo
opposite directions) $M1$ Using $v = u+at$ for P and for Q, $a = +/-g$		OR (time when at same speed in	[0]	
(1) (2)		opposite directions)	M1	Using $y = u+at$ for P and for O $a = \pm -\sigma$
v = 8.4 -get and $-v = 5.6$ -get A1 Correct sign for g $cv(5.6)$		v = 8.4 -gt and $-v = 5.6$ -gt	A1	Correct sign for g $cv(5.6)$
$v = 1.4$ {or $t = 5/7$ (0.714)} A1 Only one correct answer is needed		v = 0.1 ge and $v = 5.0$ ge $v = 1.4$ {or $t = 5/7$ (0.714)}	A1	Only one correct answer is needed
$V = 1.4 \left[(0, 1 = 5/7 (0, 714)) \right]$ At only one context answer is needed		v = 1.4 (011 - 577 (0.714))	711	Sing the contest unswer is needed
(with $y = 1.4$) M1 Using $y^2 = u^2 + 2as$ for P and for Q, $a = \pm/-g$, $cy(y)$		(with $\mathbf{v} = 1.4$)	M1	Using $v^2 = u^2 + 2as$ for P and for O, $a = \pm -g$, $cv(v)$
$1.4^2 = 8.4^2 - 2g_{Sp}$ and		$1.4^2 = 8.4^2 - 2gs_p$ and		
$(-1.4)^2 = 5.6^2 - 2gs_0$ A1 Correct sign for g, cv(5.6), candidate's answer for v (including		$(-1.4)^2 = 5.6^2 - 2gs_0$	A1	Correct sign for g, $cv(5.6)$, candidate's answer for v (including
- for Q)				- for O)
$s_{\rm P} = 3.5 \text{ and } s_{\rm O} = 1.5$ A1 cao		$s_{\rm P} = 3.5$ and $s_{\rm O} = 1.5$	A1	cao
$\left(\left(\text{with } t=5/7\right)\right)$		$\left(\text{with } t=5/7 \right)^{\sim}$		
M1 Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = \frac{1}{-g}$, $cv(t)$			M1	Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = \frac{+}{-g}$, $cv(t)$
$s = 8.4x0.714 - \frac{1}{2}gx0.714^2$ and		$s = 8.4x0.714 - \frac{1}{2} gx0.714^2$ and		
$s = 5.6x0.714 - \frac{1}{2}gx0.714^2$ A1 Correct sign for g, cv(5.6), candidate's answer for t		$s = 5.6 \times 0.714 - \frac{1}{2} \times 0.714^2$	A1	Correct sign for g, $cv(5.6)$, candidate's answer for t
(including sign of t if negative)		-		(including sign of t if negative)
$s_P = 3.5 \text{ and } s_Q = 1.5$ A1 cao}		$s_P = 3.5$ and $s_Q = 1.5$	A1	cao}
OR (motion related to greatest height		OR (motion related to greatest height		
and verification) M1 Using $v = u+at t$ for P and for Q, $a = +/-g$		and verification)	M 1	Using $v = u+at t$ for P and for Q, $a = +/-g$
0 = 8.4 -gt and $0 = 5.6$ -gt		0 = 8.4 -gt and $0 = 5.6$ -gt		
t = 6/7 and $t = 4/7$ A1 Both values correct		t = 6/7 and $t = 4/7$	A1	Both values correct
$v_P = 8.4 - 0.714g$ and $v_Q = 5.6 - 0.714g$ mid-interval t $(6/7 + 4/7)/2 = 0.714$		$v_P = 8.4 - 0.714g$ and $v_Q = 5.6 - 0.714g$		mid-interval t $(6/7+4/7)/2 = 0.714$
$\{0 = v_P - g/7 \text{ and } v_Q = 0 + g/7\}$ {Or semi-interval = $6/7 - 4/7$ }		$\{0 = v_P - g/7 \text{ and } v_Q = 0 + g/7\}$		$\{\text{Or semi-interval} = 6/7 - 4/7)/2 = 1/7\}$
$v_{\rm P} = 1.4$ and $v_{\rm Q} = -1.4$ A1 cao		$v_{\rm P} = 1.4$ and $v_{\rm Q} = -1.4$	A1	cao
$s_P = 8.4x0.714 - \frac{1}{2} gx0.714^2$ and $M1$ $s = ut + \frac{1}{2} at^2$ for P and for Q, correct sign for g,		$s_P = 8.4 \times 0.714 - \frac{1}{2} \text{ gx} 0.714^2 \text{ and}$	M1	$s = ut + \frac{1}{2} at^2$ for P and for Q, correct sign for g,
$s_Q = 5.6x0.714 - \frac{1}{2}gx0.714^2$ cv(5.6) and cv(t)		$s_Q = 5.6 \times 0.714 - \frac{1}{2} g \times 0.714^2$		cv(5.6) and $cv(t)$
{ $s_P = 0/7 - \frac{1}{2}(-g)x(1/7)^2$ and { $s = vt - \frac{1}{2}at^2$ for P and $s = ut + \frac{1}{2}at^2$ for Q}		$\{ s_P = 0/7 - \frac{1}{2}(-g)x(1/7)^2 \text{ and } \}$		$\{s = vt - \frac{1}{2} at^2 \text{ for } P \text{ and } s = ut + \frac{1}{2} at^2 \text{ for } Q\}$
$s_Q = 0/7 + \frac{1}{2} gx(1/7)^2$ A1		$s_Q = 0/7 + \frac{1}{2} gx(1/7)^2$	A1	
$s_P = 3.5 \ s_Q = 1.5$		$s_P = 3.5 \ s_Q = 1.5$		
$\{ s_P = 0.1 \ s_Q = 0.1 \}$ A1 cao		(. 01. 01)	A 1	
continued	1	$\{ s_P = 0.1 \ s_Q = 0.1 \}$	AI	cao

5(iii)	OR (without finding exactly where or when)	M1	Using $v^2 = u^2 + 2as$ for P and for Q, $a = +/-g$, $cv(5.6)$,
cont	$v_{r}^{2} = 8 A^{2} - 2g(s + / -2)$ and		different expressions for s. Correct sign for g $cy(5.6)$ $(s\pm/2)$ used only once
com	$v_{\rm P} = 0.4 - 2g(3 + 7 - 2)$ and		cao. Verbal explanation essential
	$v_0^2 = 5.6^2 - 2g[(s+/-2)]$	A1	Using $v = u+at$ t for P and for Q, $a = +/-g$
	$v_P^2 = v_Q^2$ for all values of s so that		Correct sign for g, correct choice for velocity of zero,
	the speeds are always the same at the		cv(5.6)
	same heights.	Al	
	0 - 84 at and $0 - 56$ at		
	0 = 0.4 -gt and $0 = 5.0$ -gt	AI	
	t $_{\rm P} = 6/7$ and t $_{\rm Q} = 4/7$ means there is a		
	time interval when Q has started to		cao. Verbal explanation essential
	descend but P is still rising, and there		
	will be a position where they have the		
	opposite directions	A 1	
	opposite uncertoins.		
6(i)		M1	For differentiating s
	$v = 0.004t^3 - 0.12t^2 + 1.2t$	A1	Condone the inclusion of +c
	$v(10) = 4 - 12 + 12 = 4ms^{-1}$ (AG)	A1	Correct formula for v (no +c) and t=10
		[3]	stated sufficient
(11)	$0.01 - 0.04t^2$ (1.0)	MI	For integrating a
	$v = 0.8t - 0.04t^{-1} (+C)$	AI M1*	Only for using $y(10) = 4$ to find C
	8 - 4 + C = 4 $y = 0.8x20 = 0.04x20^2 (+ C)$	M1* M1	Only for using $V(10) = 4$ to find C
	v = 0.8320 = 0.04320 (+ C) v(20) = 16 - 16 = 0 (AG)	DA1	Dependant on M1*
	(10) = 10 + 10 = 0 (110)	[5]	
(iii)		M1	For integrating v
	$S = 0.4t^2 - 0.04t^3/3$ (+K)	A1	Accept $0.4t^2 - 0.013t^3$ (+ ct +K, must be
			linear)
	s(10) = 10 - 40 + 60 = 30	B1	
	40 40/2 V 20 NV 10/2	M1	For using $S(10) = 30$ to find K
	$40 - 40/3 + K = 30 \Rightarrow K = 10/3$	AI	Not if S includes ct
	$S(20) = 160 = 320/3 \pm 10/3 = 56.7m$	R1	Accept 56.6 to 56.7 Adding 30 subsequently is not isw
	OR	[6]	hence B0
	s(10) = 10 - 40 + 60 = 30	B1	
		M1	For integrating v
	$S = 0.4t^2 - 0.04t^3/3$	A1	Accept $0.4t^2 - 0.013t^3$ (+ ct +K, must be linear)
		M1	Using limits of 10 and 20 (limits 0, 10 M0A0B0)
	S(20) - S(10) = 26.6, 26.7	A1	For 53.3 - 26.7 or better (Note $S(10) = 26.7$ is
		-	fortuitously correct M0A0B0)
	displacement is 56.7m	B1	Accept 56.6 to 56.7

7(i)	$R = 1.5gcos21^{\circ}$	B1	
		M1	For using $F = \mu R$
	Frictional force is 10.98N	A1	Note 1.2gcos21=10.98 fortuitously, B0M0A0
	(AG)	[3]	
(ii)		M1	For obtaining an N2L equation relating to the block in which F,
			T, m and a are in linear combination or
			For obtaining an N2L equation relating to the object in which
			T, m and a are in linear combination
	$T + 1.5gsin21^{\circ} - 10.98 = 1.5a$	A2	-A1 for each error to zero
	1.2g - T = 1.2a	A2	-A1 for each error to zero
		[5]	Error is a wrong/omitted term, failure to substitute a numerical
			value for a letter (excluding g), excess terms. Minimise error
			count.
(iii)	T - 1.5a = 5.71	M1	For solving the simultaneous equations in T and a for a.
	and $1.2a + T = 11.76$		
	a = 2.24 (AG)	A1	Evidence of solving needed
		[2]	
(iva)	$v^2 = 2 x 2.24 x 2$	M1	For using $v^2 = 2as$ with cv (a) or 2.24
	Speed of the block is 2.99ms ⁻¹	A1	Accept 3
		[2]	
(ivb)		M1	For using $T = 0$ to find a
	a = -3.81	A1	
	$v^2 = 2.99^2 + 2 x (-3.81) x 0.8$	M1	For using $v^2 = u^2 + 2as$ with $cv(2.99)$ and $s = 2.8 - 2$ and any
			value for a
	Speed of the block is 1.69ms ⁻¹	A1	Accept art 1.7 from correct work
		[4]	

4728 Mechanics 1

$ \begin{bmatrix} 70 \times 0.3 \\ 686 + 21 \\ 707 \text{ N} \end{bmatrix} = 21 \\ + cvs [70(9.8+0.3) gcts B1B1M1] \\ 1 \\ + cvs [70(9.8+0.3) gcts B1B1M1] \\ + cvs [70(9.8+0.3) gcts B1B1M1] \\ 1 \\ 1 \\ + cvs [70(9.8+0.3) gcts B1B1M1] \\ 1 \\ 1 \\ + cvs [70(9.8+0.3) gcts B1B1M1] \\ 1 \\ 1 \\ + cvs [70(9.8+0.3) gcts B1B1M1] \\ 1 \\ 1 \\ 1 \\ + cvs [70(9.8+0.3) gcts B1B1M1] \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	1	70 x 9.8 or 70g	B1	=686
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		70 x 0.3	B1	=21
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		686 + 21	M1	+ cvs [70(9.8+0.3) gets B1B1M1]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		707 N	A1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			[4]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	+/-(40 x 4 - 60 x 3)	B1	Difference of terms, accept with g
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		+/-([40 + 60] v	B1	Sum of terms, accept with g.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$+/-(40 \times 4 - 60 \times 3) = +/-([40 + 60] \times 10^{-1})$	M1	Accept inclusion of g in equation.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Speed = 0.2 ms^{-1}	A1	Not if g used. SR $40x4-60x3=[40+60]$ v;
Same as heavier or opposite lighter/"she"B1 [5]"Left" requires diagram for B1 If same direction before collision award B0BIMLA0B03i $\sqrt[4]{(12^2 + 15^2)}$ 19.2 NA1 A1 A1 A1 Bcaring = 038.7"M1 A1 <b< td=""><td></td><td>1</td><td></td><td>v=0.2, as heavier, award 5 marks</td></b<>		1		v=0.2, as heavier, award 5 marks
International of the principal of the pr		Same as heavier or opposite lighter/"she"	B1	"Left" requires diagram for B1
Image: Second			[5]	If same direction before collision award
SiMI $\sqrt{(12^2 + 15^2)}$ $19.2 N$ Applies Pythagoras, requires +. A1 A1 A2000 and Paper Pithagoras, requires +. A1 A2000 and Paper Pithagoras, requires +. A1 A2000 and Paper Pithagoras, requires +. A1 A2000 and Pithagoras, Pithag			[0]	B0B1M1A0B0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Dobininiobo
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3i		M1	Applies Pythagoras, requires +.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\sqrt{(12^2+15^2)}$	A1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		19.2 N	A1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			M1	trig and R included between X and Y
Bearing = 038.7°Al (61) B1ft (12)Accept 039 or 39 or at 39 from below (not given if X and Y transposed) ft cv 19.2 180+cv 38.7(-360) or correct answer4i $v = dx/dt$ $v(2) = 4x^2 - 8x 2t$ $v(2) = 4x^2 - 8x 2z = 0x(2) = 2^4 - 8x 2^2 + 16 = 0x(2) = 2^4 - 8x 2^2 + 16 = 0x(2) = 2^4 - 8x 2^2 + 16 = 0x(2) = 2^4 - 8x 2^2 + 16 = 0x(2) = 2^4 - 8x 2^2 + 16 = 0x(2) = 12x 2^2 - 16 = 32 ms^{-2}M1AlAlAlAlAlAlAlAlAccept with +cMIAlAlAccept with +cSubstitutes 2 in displacement, explicitAlAlAlAccept with +cAlAlAlAccept with +cAlAlAlAlAccept with +cAlAlAlAlAccept with +cAlAlAlAlAlAlAlAlAccept with +cAl$		$\tan\theta = \frac{12}{15}, \ \tan\theta = \frac{15}{12}, \ \sin\theta = \frac{12}{19.2}, \ \cos\theta = \frac{15}{19.2}$	A1	Accept cv 19.2
3ii $E = 19.2$ Bearing = 180 + 38.7 = 219°161 (not given if X and Y transposed) f ev 19.2 B1ft B1ft B1ft B1ft at (not given if X and Y transposed) f ev 19.2 B1ft B1		Bearing = $0.38.7^{\circ}$	A1	Accept 039 or 39 or art 39 from below
3ii $E = 19.2$ Baring = 180 + 38.7 = 219° B1ft Corput Accept with +c All All Accept with +c All All Accept with +c All All Accept wit			[6]	(not given if X and Y transposed)
Sin Dering 180 + 38.7 = 219° Diff Biff 180 + cv 38.7(-360) or correct answer 4i $v = dx/dt$ $v = dx/dt$ MI Accept with + c Substitutes 2 in cv v, explicit 4i $v = 4x^{23} - 8x^{22}$ AG AI Substitutes 2 in displacement, explicit 4ii $a = dv/dt$ $a = 12^{4} - 16$ MI Accept with + c 4ii $a = 12^{4} - 16$ AI Ao if + c $a(2) = 12 x 2^{2} - 16 = 32 ms^{-2}$ AI Accept with + c 5ia $250a = -150$ AI Accept with + c $a = -0.6 ms^{-2}$ AG AI Ao with + c [2] MI Accept with + c Ao with + c [3] $00 x - 0.6 = D - 600 \text{ or } (900 + 250)x - 0.6 = D - 600 - 150$ AI Accept with + c $b = 00 x - 0.6 = D - 600 \text{ or } (900 + 250)x - 0.6 = D - 600 - 150$ AI Applies N2L to car or car/trailer with c $5ic$ $15^{2} = 18^{2} + 2x (-0.6)s$ MI Uses $v^{2} = u^{2} + 2(+/-0.6)s$ with 15, 18 $5iia$ $00x - 0.60 = -600 - 150$ MI AI Positive, allow from 18^{2} = 15^{2} + 2x0.6s $5iiib$ $900x - 250x = 380 - 600 - 150$ </td <td>3ii</td> <td>E = 19.2</td> <td>B1ft</td> <td>ft cv 19.2</td>	3ii	E = 19.2	B1ft	ft cv 19.2
Dating = 160 + 367 + 217Diff4i $v = dx/dt$ 121 $v(2) = 4t^3 - 8x 2t$ M1 $v(2) = 4t^3 - 8x 2t^2$ AG $v(2) = 4t^3 - 8x 2t^2$ AG $v(2) = 4t^3 - 8x 2t^2 + 16 = 0$ AG $x(2) = 2^4 - 8x 2^2 + 16 = 0$ AG $x(2) = 2^4 - 8x 2^2 + 16 = 0$ AG $x(2) = 12 x 2^2 - 16 = 32 ms^2$ M1Uses differentiation of v formula $a = dv/dt$ A1 $a = 12t^2 - 16$ A1 $a(2) = 12 x 2^2 - 16 = 32 ms^2$ Sib $900 x - 0.6 = D -600 \text{ or } (900+250)x - 0.6 = D -600 - 150$ $D = 60 N$ $5ic$ $15^2 = 18^2 + 2x (-0.6)s$ $s = 82.5 m$ Siia $5ia$ $250x = -150$ $a = 0.713 ms^{-2}$ $4ii$ $a = 0.713 ms^{-2}$ $4ii$ $250 x 0.713 = T - 150 + 250x9.8sin3$ $T = 200 N$ 41 $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A2$ $A2$ $A1$ $A1$ $A1$ $A2$ $A3$ $A41$ $A41$ $A42$ $A42$ $A42$ $A42$ $A41$ $A42$ $A41$ $A41$ $A41$ $A42$ $A52$ $A53$ $A54$ $A54$ $A54$ $A54$ $A54$ $A54$ $A54$ $A54$ <tr< td=""><td>511</td><td>Bearing $-180 \pm 38.7 - 210^{\circ}$</td><td>B1ft</td><td>$180\pm cy$ 38 7(-360) or correct answer</td></tr<>	511	Bearing $-180 \pm 38.7 - 210^{\circ}$	B1ft	$180\pm cy$ 38 7(-360) or correct answer
4iv = dx/dt v = 4xl^3 - 8 x 21 v(2) = 4x2^3 - 8x2x2 = 0MI AG x(2) = 2^4 - 8 x 2^2 + 16 = 0MI AG AG AGMI All Accept with +c MI All A do if +c4iia = dv/dt a = 12t^2 - 16 a(2) = 12 x 2^2 - 16 = 32 ms^2AG AG AIMI AI AI All Accept with +c AI AI All Accept with +c AI AIWess differentiation of v formula Accept with +c AO if +c5ia $250a = -150$ a = -0.6 ms^2AG AGMI AI AI AIValues used in N2L for trailer F=+/-150 Or -ve convincingly argued5ia $250a = -150$ a = -0.6 ms^2AG AGMI AI AI AI BIValues used in N2L for trailer F=+/-150 Or -ve convincingly argued5ia $250a = -150$ a = -0.6 ms^2AG AGMI AI AI AI AI BI AI AI AI AIValues used in N2L for trailer F=+/-150 Or -ve convincingly argued5ia $250a = -150$ a = 0.60 or (900+250)x-0.6 = D -600 -150 D = 60 NMI AI<		5camg = 100 + 50.7 - 217	[2]	100 rev 30.7(-500) of confect answer
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			[4]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4i	v = dx/dt	M1	Uses differentiation, may be seen in (ii)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$v = 4t^3 - 8 \times 2t$	A1	Accept with +c
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$v(2) = 4x2^3 - 8x2x2$	M1	Substitutes 2 in cv v, explicit
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		= 0 AG	A1	A0 if +c
$ \begin{array}{c} 4ii \\ 4ii \\ a = dv/dt \\ a = 12t^2 - 16 \\ a(2) = 12 x 2^2 - 16 = 32 ms^{-2} \end{array} \begin{array}{c} [5] \\ Mi \\ A1 \\ A1 \\ A0 \text{ with } + c \\ A1 \\ B00 x - 0.6 = D -600 \text{ or } (900 + 250)x - 0.6 = D -600 - 150 \\ D = 60 \text{ N} \\ 5ic \\ 15^2 = 18^2 + 2x (-0.6)s \\ s = 82.5 \text{ m} \\ 5iia \\ 5iia \\ 5iib \\ (900 + 250)a = 980 - 600 - 150 \\ 5iib \\ 5iib \\ (900 + 250)a = 980 - 600 - 150 \\ 5iib \\ 5iib \\ (900 + 250)a = 980 - 600 - 150 \\ 5iib \\ 5iib \\ (900 + 250)a = 980 - 600 - 150 \\ + /-(900 + 250)x9.8sin3 \\ a = 0.713 \text{ ms}^2 \\ (900 + 250)x - 0.6 = D -2000 - 150 \\ + /-(900 + 250)x - 0.6 = D -600 - 150 \\ + /-(900 + 250)x - 0.6 = D -600 - 150 \\ (900 + 250)a = 980 - 600 - 150 \\ + /-(900 + 250)x - 0.6 = D -600 - 150 \\ (900 + 250)a = 980 - 600 - 150 \\ + /-(900 + 250)x - 0.8sin3 \\ a = 0.713 \text{ ms}^2 \\ (900 + 250)x - 150 + 250x - 8sin3 \\ a = 0.713 \text{ ms}^2 \\ T = 200 \text{ N} \\ \end{array}$		$x(2) = 2^4 - 8 x 2^2 + 16 = 0$ AG	B1	Substitutes 2 in displacement, explicit
4ii $a = dv/dt$ M1 M1 A1 A2 ccept with +c A1 A1 A1 Accept with +c A0 with +c Sia 250a = -150 AG M1 Values used in N2L for trailer F=+/-150 Sib 900 x -0.6 = D -600 or (900+250)x-0.6 = D -600 -150 M1 Values used in N2L for trailer F=+/-150 Sib 900 x -0.6 = D -600 or (900+250)x-0.6 = D -600 -150 M1 A1 Applies N2L to car or car/trailer with correct number of forces 5ic $15^2 = 18^2 + 2x$ (-0.6)s [3] M1 Uses v ² = u ² + 2(+/-0.6)s with 15, 18 5iia $5iia$ $15^2 = 18^2 + 2x$ (-0.6)s [3] M1 Uses v ² = u ² + 2(+/-0.6)s with 15, 18 5iia $(900+250)a = 980 - 600 -150$ [3] M1 A1 Positive, allow from 18 ² = 15 ² + 2x0.6s 5iib $(900+250)a = 980 - 600 -150$ A1 $250a = T - 150 + 250x9.8sin3 - T$ A1 5iib $a = 0.713 \text{ ms}^2$ A1 A1 A10 A10 $250 x 0.713 = T - 150 + 250x9.8sin3$ A1 A1 A10 A10 A10 $T = 200 \text{ N}$ A1 A1 A1 A1 A1 A11 <td></td> <td></td> <td>[5]</td> <td>1 / 1</td>			[5]	1 / 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4ii	a = dv/dt	M1	Uses differentiation of v formula
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$a = 12t^2 - 16$	A1	Accept with $+c$
Sia 250a = -150 a = -0.6 ms ⁻² M1 AG Values used in N2L for trailer F=+/-150 Or -ve convincingly argued 5ib 900 x -0.6 = D -600 or (900+250)x-0.6 = D -600 -150 D = 60 N M1 A1 A1 A1 Applies N2L to car or car/trailer with correct number of forces (including T if T=0 used later) 5ic $15^2 = 18^2 + 2x (-0.6)s$ s = 82.5 m M1 Siia Uses v ² = u ² + 2(+/-0.6)s with 15, 18 Positive, allow from $18^2 = 15^2 + 2x0.6s$ 5iia (900+250)a = 980 - 600 -150 s = 0.713 ms ⁻² M1 Hold (900+250)x - 0.6 = D -600 -150 Siib A1 A1 A1 5iib (900+250)a = 980 - 600 -150 Siib A1 Hold (200+250)a = 980 - 600 -150 T = 200 N A1 A1 5iib (900+250)a = 7 - 150 + 250x9.8sin3 A1 A1 A1 A1 250 x 0.713 = T - 150 + 250x9.8sin3 T = 200 N A1 A1		$a(2) = 12 \times 2^2 - 16 = 32 \text{ ms}^{-2}$	A1	A0 with $+c$
5ia $250a = -150$ $a = -0.6 \text{ ms}^2$ AGM1 A1 [2]Values used in N2L for trailer F=+/-150 Or -ve convincingly argued5ib $900 \text{ x} - 0.6 = \text{D} -600 \text{ or } (900+250)\text{ x} - 0.6 = \text{D} -600 - 150$ $\text{D} = 60 \text{ N}$ M1 A1 B1 A1 B1 A1 B2Values used in N2L for trailer F=+/-150 Or -ve convincingly argued5ic $15^2 = 18^2 + 2x (-0.6) \text{ s}$ $\text{s} = 82.5 \text{ m}$ M1 A1 A1 A1 B1 A1 B2Values used in N2L for trailer F=+/-150 Or -ve convincingly argued5iia $15^2 = 18^2 + 2x (-0.6) \text{ s}$ $\text{s} = 82.5 \text{ m}$ M1 A1 A1 B1 B2Uses $v^2 = u^2 + 2(+/-0.6) \text{ s}$ with 15, 18 Positive, allow from $18^2 = 15^2 + 2x 0.6 \text{ s}$ 5iia $(900+250)a = 980 - 600 - 150$ $\text{s} = 4.713 \text{ ms}^2$ M1 $+/-(900+250)x9.8 \text{ sin3}$ $a = 0.713 \text{ ms}^2$ A1 A1 $\text{A1} = 0.713 \text{ ms}^2$ 5iib $(900+250)a = 980 - 600 - 150$ $+ /-(900+250)x9.8 \text{ sin3}$ $\text{A1} = 200 \text{ N}$ A1 $\text{A1} = 200 \text{ N}$ A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 			[3]	
5ia $250a = -150$ $a = -0.6 \text{ ms}^{-2}$ AGM1Values used in N2L for trailer F=+/-150 Or -ve convincingly argued5ib $900 \times -0.6 = D -600 \text{ or } (900+250) \times -0.6 = D -600 - 150$ $D = 60 \text{ N}$ M1Applies N2L to car or car/trailer with correct number of forces (including T if T=0 used later)5ic $15^2 = 18^2 + 2x (-0.6) \text{s}$ $\text{s} = 82.5 \text{ m}$ M1Values used in N2L for trailer F=+/-150 Or -ve convincingly argued5iia $15^2 = 18^2 + 2x (-0.6) \text{s}$ $\text{s} = 82.5 \text{ m}$ M1Lises $v^2 = u^2 + 2(+/-0.6) \text{s}$ with 15, 18 Positive, allow from $18^2 = 15^2 + 2x 0.6 \text{s}$ 5iia $(900+250)a = 980 - 600 - 150$ $\pm /-(900+250) \times 9.8 \text{sin3}$ $a = 0.713 \text{ ms}^{-2}$ A1Applies N2L to car+trailer with F(driving) F(resisting), F(wt cmpt-allow without g), or each part, as above and T. $900a = 980 - 600 + /- 900x 9.8 \text{sin3} - T$ $A1250a = T - 150 + 250x 9.8 \text{sin3}A1A1A10w (art) 0.71 \text{ from correct number}of forces of correct type. Or for car900x 0.713 = T - 600 + 900x 9.8 \text{sin3} + 980A1A200 (3sf)$				
a = -0.6 ms^{-2}AGAIOr -ve convincingly argued5ib $900 \times -0.6 = D -600 \text{ or } (900+250) \times -0.6 = D -600 - 150$ AI $[2]$ $D = 60 \text{ N}$ AIcorrect number of forces5ic $15^2 = 18^2 + 2x (-0.6) \text{s}$ AIUses $v^2 = u^2 + 2(+/-0.6) \text{s}$ with 15, 18 $s = 82.5 \text{ m}$ AIUses $v^2 = u^2 + 2(+/-0.6) \text{s}$ with 15, 185iia $(900+250)a = 980 - 600 - 150$ AIPositive, allow from $18^2 = 15^2 + 2x0.6 \text{s}$ 5iib $(900+250)a = 980 - 600 - 150$ AIApplies N2L to car+trailer with F(driving) F(resisting), F(wt cmpt-allow without g), or each part, as above and T.5iib $(900+250)a = 980 - 600 - 150$ AI $5iib$ $+/-(900+250)x9.8 \text{sin3}$ AI $a = 0.713 \text{ ms}^{-2}$ AI $250 \times 0.713 = \text{T} - 150 + 250x9.8 \text{sin3}$ AI $T = 200 \text{ N}$ AIAI $7 = 200 \text{ N}$	5ia	250a = -150	M1	Values used in N2L for trailer $F=+/-150$
5ib $900 \times -0.6 = D -600 \text{ or } (900+250) \times -0.6 = D -600 -150$ $D = 60 \text{ N}$ [2] Mi A1 A1 (including T if T=0 used later)5ic $15^2 = 18^2 + 2x (-0.6) \text{s}$ $\text{s} = 82.5 \text{ m}$ [3] Mi A1 A1 Positive, allow from $18^2 = 15^2 + 2x 0.6 \text{s}$ [2] Mi A1 Positive, allow from $18^2 = 15^2 + 2x 0.6 \text{s}$ 5iia(900+250)a = 980 - 600 -150 $+/-(900+250)x9.8 \text{sin}3$ a = 0.713 ms^{-2}A1 $+/-(900+250)x9.8 \text{sin}3$ A1 $250 \times 0.713 = \text{T} - 150 + 250x9.8 \text{sin}3$ T = 200 NA1 A1 N2L for trailer, cv a, with correct number of forces of correct type. Or for car $900x0.713 = -\text{T}-600 + 900x9.8 \text{sin}3 + 980$ A1 A1		$a = -0.6 \text{ ms}^{-2}$ AG	A1	Or -ve convincingly argued
5ibM1Applies N2L to car or car/trailer with correct number of forces (including T if T=0 used later)5ic $15^2 = 18^2 + 2x (-0.6)s$ $s = 82.5 m$ M1Al A1 [3]Uses $v^2 = u^2 + 2(+/-0.6)s$ with 15, 18 Positive, allow from $18^2 = 15^2 + 2x0.6s$ 5iia(900+250)a = 980 - 600 - 150 $+ /-(900+250)x9.8sin3$ $a = 0.713 ms^{-2}$ M1Applies N2L to car+trailer with F(driving) F(resisting), F(wt cmpt-allow without g), or each part, as above and T.5iib $= 0.713 ms^{-2}$ A1 $= 250 \times 0.713 = T - 150 + 250x9.8sin3$ $T = 200 N$ A1 A1 A1 A1 A1			[2]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5ib		M1	Applies N2L to car or car/trailer with
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		900 x -0.6 = D -600 or (900+250)x-0.6 = D -600 -150	A1	correct number of forces
5ic $15^2 = 18^2 + 2x (-0.6)s$ [3] M1 A1 Positive, allow from $18^2 = 15^2 + 2x0.6s$ 5iia[2] M1[2] M1[3] A1 Positive, allow from $18^2 = 15^2 + 2x0.6s$ 5iia(900+250)a = 980 - 600 - 150 + /-(900+250)x9.8sin3 a = 0.713 ms^{-2}[4] A1 A1[3] A1 A1 A10w (art) 0.71 from correct work5iib $-1.50 + 250x9.8sin3$ T = 200 N $-1.50 + 250x9.8sin3$ A1 A1[3]		D = 60 N	A1	(including T if T=0 used later)
5ic $15^2 = 18^2 + 2x (-0.6)s$ M1Uses $v^2 = u^2 + 2(+/-0.6)s$ with 15, 185iia $s = 82.5 m$ M1A15iia $(900+250)a = 980 - 600 - 150$ M1 $A1$ 5iib $(900+250)a = 980 - 600 - 150$ $+/-(900+250)x9.8sin3$ A15iib $a = 0.713 ms^{-2}$ $A1$ $900a = 980 - 600 + /- 900x9.8sin3 - T$ $250 x 0.713 = T - 150 + 250x9.8sin3$ $A1$ $A1$ $T = 200 N$ $A1$ $N2L$ for trailer, cv a, with correct number $A1$ $A20 N$ $A1$ $A1$ $A1$ $A20 N$ $A1$			[3]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5ic	$15^2 = 18^2 + 2x (-0.6)s$	M1	Uses $v^2 = u^2 + 2(+/-0.6)s$ with 15, 18
5iia[2] M1Applies N2L to car+trailer with F(driving) F(resisting), F(wt cmpt-allow without g), or each part, as above and T.5iib $(900+250)a = 980 - 600 - 150$ $+ /-(900+250)x9.8sin3$ a = 0.713 ms^{-2} A1 A1 $900a = 980 - 600 + /- 900x9.8sin3 - T$ A1 A1 $250a = T - 150 + /- 250x9.8sin3$ A1 A1 M1 N2L for trailer, cv a, with correct number of forces of correct type. Or for car $900x0.713 = -T-600 + 900x9.8sin3 + 980$ A1 A1 A1 M1 A1<		s = 82.5 m	A1	Positive, allow from $18^2 = 15^2 + 2x0.6s$
5iiaM1Applies N2L to car+trailer with F(driving) F(resisting), F(wt cmpt-allow without g), or each part, as above and T.5iib $(900+250)a = 980 - 600 - 150$ $+ /-(900+250)x9.8sin3$ a = 0.713 ms^{-2} A1 $900a = 980 - 600 + /- 900x9.8sin3 - T$ $A15iiba = 0.713 \text{ ms}^{-2}A1900a = 980 - 600 + /- 250x9.8sin3A1A1250 \ge 0.713 = T - 150 + 250x9.8sin3T = 200 \text{ N}A1N2L for trailer, cv a, with correct numberof forces of correct type. Or for car900x0.713 = -T-600 + 900x9.8sin3 + 980A1$			[2]	
5iib $(900+250)a = 980 - 600 - 150$ $+ /-(900+250)x9.8sin3$ $a = 0.713 ms^{-2}$ A1 $+ /-(900+250)x9.8sin3$ A1 $250 \times 0.713 = T - 150 + 250x9.8sin3$ $T = 200 N$ A1 $A1$ $A1$ F(resisting), F(wt cmpt-allow without g), or each part, as above and T. $900a = 980 - 600 + /- 900x9.8sin3 - T$ $A1$	5iia		M1	Applies N2L to car+trailer with F(driving)
5iib $(900+250)a = 980 - 600 - 150$ $+ /-(900+250)x9.8sin3$ $a = 0.713 ms^{-2}$ A1 $+ /-(900+250)x9.8sin3$ A1 $250 x 0.713 = T - 150 + 250x9.8sin3$ $T = 200 N$ A1 $A1$ <				F(resisting), F(wt cmpt-allow without g),
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				or each part, as above and T.
5iib + /-(900+250)x9.8sin3 $a = 0.713 \text{ ms}^{-2}$ A1 $250 = T - 150 + /- 250x9.8sin3$ A1 $[4]$ M1 $250 x 0.713 = T - 150 + 250x9.8sin3$ T = 200 N A1 [3]		(900+250)a = 980 - 600 - 150	A1	900a = 980 - 600 +/- 900x9.8sin3 - T
$a = 0.713 \text{ ms}^{-2}$ A1 [4]Allow (art) 0.71 from correct work $250 \times 0.713 = T - 150 + 250x9.8sin3$ A1 A1 Of forces of correct type. Or for car 900x0.713 = -T-600 + 900x9.8sin3 + 980 A1 [3] $T = 200 \text{ N}$ A1 [3]	5iib	+/-(900+250)x9.8sin3	A1	250a = T - 150 + 250x9.8sin3
$\begin{bmatrix} 4\\ M1\\ N2L \text{ for trailer, cv a, with correct number} \\ So x 0.713 = T - 150 + 250x9.8sin3 \\ T = 200 \text{ N} \end{bmatrix}$ $\begin{bmatrix} 4\\ M1\\ A1\\ of \text{ forces of correct type. Or for car} \\ 900x0.713 = -T-600 + 900x9.8sin3 + 980 \\ A1\\ I31 \end{bmatrix}$		$a = 0.713 \text{ ms}^{-2}$	A1	Allow (art) 0.71 from correct work
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			[4]	
$\begin{array}{c} 250 \text{ x } 0.713 = \text{T} - 150 + 250 \text{x} 9.8 \text{sin} 3 \\ \text{T} = 200 \text{ N} \end{array} \qquad \begin{array}{c} \text{A1} \\ \text{A1} \\ \text{If } 1 \\ \text{A2} \\ \text{A1} \\ \text{A1} \\ \text{A1} \\ \text{A2} \\ \text{A1} \\ \text{A2} \\ \text{A2} \\ \text{A3} \\ \text{A3} \\ \text{A3} \\ \text{A3} \\ \text{A3} \\ \text{A4} \\ \text{A3} \\ \text{A4} \\ \text{A3} \\ \text{A4} \\ \text{A5} \\ \text{A6} \\ \text{A6} \\ \text{A6} \\ \text{A7} \\ $			M1	N2L for trailer, cy a, with correct number
T = 200 N $T = 200 N$ $A1$ $[3]$ $A1$ $[3]$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$		$250 \ge 0.713 = T - 150 + 250 \ge 9.8 \sin 3$	A1	of forces of correct type. Or for car
T = 200 N $A1$ $[3]$ $A1$ $[3]$ $A1$ $[3]$				900x0713 = -T-600 + 900x98sin3 + 980
		T = 200 N	A1	Anything rounding to 200 (3sf)
			[3]	

6i	$4.9 = \mu x 14.7$		M1	Uses $F = \mu R$
	$\mu = 1/3$	AG	A1	Allow 0.333 or 0.3 recurring
			[2]	C
6iia			M1	3 force vertical equation
ona	$P + 4.9 \sin 30 - 14.7$		Δ1	s force vertical equation
	R = 4.25 N			A count 12.2 or 12.2
	R = 12.25 N		AI M1	
	$F = 12.25 \text{ x} \frac{1}{3}$		MI	Uses $F = \mu R$ with new R {may be seen in
	F = 4.08(333) N [or 49/12 N]		Al	{part b
			[5]	
6iib	m = 14.7/9.8 = 1.5 kg		B1	
			M1	N2L horizontally with 2 relevant forces,
				including 4.9sin/cos30
	$4.9\cos 30 - 4.08(333) = 1.5a$		A1	Allow $cv(F)$ SR Award A1 if m=14.7 used
	$a = 0.107 \text{ ms}^{-2}$		Δ2	SR A1 for 0.11 0.109
6:::			[5]	or art 0.011 from $m = 14.7$
0111	D (147 40 20)/2		[J]	of art 0.011 from $m = 14.7$
	$\mu R = (14.7 - 4.9\cos 30)/3$		BI	3.49, accept 3.5
	Horizontal component of force = $4.9\sin 30$		BI	2.45, accept 2.4 or 2.5
	Horizontal component of force < ③R		M1	Comparing two values
	Friction = 2.45 N		A1	Not 2.4 or 2.5; Explicit (M1 essential)
			[4]	
7i	$s = 0.5 x 1.4 x 0.8^2$		M1	Uses $s = 0.5x1.4t^2$
	s = 0.448 m		A1	Not 0.45
	$v = 1.4 \times 0.8$		M1	Uses $v = 1.4t$
	$v = 1.12 \text{ ms}^{-1}$		A1	
			[4]	
711	$0^2 - 1.12^2 - 2 \times 9.8s$		ر ד. M1	Uses $0^2 - u^2 - 2\pi s$ or $u^2 - 2\pi s$
/ 11	c = 0.064 m			2530 = 4 253014 = 253
	S = 0.004 III			Allow Verification $r = 0.064 + 1.12t + 4.0t^2$
	0 = 1.12 - 9.8t $(t = 0.114s)$		MI I	or $0.064 = 1.121 - 4.91$
	t = (0.114 + 0.8) = 0.914s		AI	Allow 0.91 {or $0=1.12t-4.9t^2$ and halve t
			[4]	
7iii	Scalene triangle, base on t axis		B1	NB Award A1 for 0.91 on t axis if total
	right edge steeper and terminates on axis, or cro	osses	B1	time not given in (ii)
	axis at $t = 0.91$		[2]	
7iv			M1	Uses N2L for A or B with attempt at
				2 forces
			A1	Fither
	$1 \Delta x \Delta - 9 8 x \Delta = 5.88 \text{ or } 1 \Delta v R = 5.88 \text{ . } 0.8 v R$		Δ1	
	A = 0.7			Not 0 53
7	A = 0.7			1001 0.55
/va	B = 0.525		[4]	
			MI	Uses tension and 0.5g without particle
	$T = 0.5 \times 9.8 + 2 \times 5.88$			weights
7vb	T = 16.66 N		A1	Allow 16.7
			[2]	
	T = 4.9 N		B1	
			[1]	

4728 Mechanics 1

1 (i)	900a = 600 - 240	M1	N2L with difference of 2 forces, accept 360	
	$a = 0.4 \text{ ms}^{-2}$ AG	A1		
		[2]		
(ii)	9 = 5 + 0.4t	M1	v = u + 0.4t or $v = u + (cv 0.4)t$	
()	t = 10 s	A1	· · · · · · · · · · · · · · · · · · ·	
	$9^2 - 5^2 + 2x0 As$	M1	or $s = (u+v)t/2$ or $s = ut+0.5x cv(0.4)t^2$	
	s = 70 m		013 - (u + v)u = 013 - u + 0.5 x c + (0.4)u	
	s = 70 m	лі [4]		
		[4]		
a (!)	Development in 2 menu line (in me	N/1 *		
2(1)	Resolves a force in 2 perp. directions	MI [*]	Uses vector addition or subtraction $L = D^2$	
	Uses Pythagoras $R^2 =$	D*N	11 Uses cosine rule $R^2 =$	
	$(14\sin 30)^2 +$	Al	$14^2 + 12^2$ -	
	$(12+14\cos 30)^2$	A1	2x14x12cos150	
	{or $\mathbf{R}^2 = (12\sin 30)^2 + (14 + 12\cos 30)^2$ }			
	R = 25.1 AG	A1	cso (Treat $R^2 = 14^2 + 12^2 + 2x14x12cos30$	
(ii)		[5]	as correct)	
	Trig to find angle in a valid triangle	M1	Angle should be relevant	
	tanB=7/24.1,sinB=7/25.1,cosB=24.1/25.1	A1	sinB/14 = sin150/25.1. Others possible.	
	B = 016, (0)16.1° or (0)16.2°	A1	Cosine rule may give (0)16.4, award A1	
		[3]		
L				
3(i)	a = 6/5	M1	Acceleration is gradient idea, for portion of graph	
~ /	$a = 1.2 \text{ ms}^{-2}$	A1	Accept 6/5	
(ii)		[2]	1	
()	$s = (6x10/2)$ {or $(6x5/2)$	M1	Area under graph idea or a formula used correctly	
	\mathbf{x}^2 \mathbf{x}^4	M1	Double {Quadruple} journey	
(iii)	s = 60 m	Δ1	Double (Quudrupie) journey	
(111)	5 – 00 m	[3]		
		[J] M1	y=y+at idea t not equal to 17 (except $y=1.2t-24$)	
	v = 6 + 1.2(17.15)		y = u + at (aca, t) (0, 17) + (cxcept v = 1.2t-24)	
	v = -0 + 1.2(1/-15) $v = -3.6 \text{ ms}^{-1}$		SR v=3.6 neither $\Delta 1$ but give both $\Delta 1$ if final answer	
	v = -3.0 ms	A1 [3]	SA = 3.0 lie line A1, but give bout A1 II final answer	
		[]]	given is -5.0	
4(i)		M1	Difference of 2 horizontal components both < 15	
-(1)	F = 15sin50 - 15sin30 = 3 99 N	A1	Not 4 or 4.0	
	Left	R1	Accept reference to 30 degree string	
	Don	[3]	May be given in ii if not attempted in i	
(ii)		M1	Faulting 4 vertical forces/components	
(11)	$B = f(30, 15\cos 50, 15\cos 30)$	$\Delta 1$	30g is accentable	
	$R = 30.15\cos 50.15\cos 30$	Δ1	-7.36(78) treat 30g as a misread	
	$\mu = 3.99/7.36(78)$	M1	Using $\mathbf{F} = \mathbf{u}\mathbf{R}$ with $cy(3.99)$ and $cy(7.36(78.))$	
	$\mu = 0.541 \text{ or } 0.542 \text{ or } 0.543$		Accent 0.54 from correct work, e.g. $4/7.4$	
	$\mu = 0.541$ of 0.542 of 0.545	[5]	Accept 0.54 from concer work, e.g. 4/7.4	
L		[2]		
5(i)	2400x5 - 3600x3	B 1	Award if g included	
	2400v + 3600v	B1	Award if g included	
	2400v + 3600v = 2400v + 3600v	M1	Equating momentums (award if g included)	
	$v = 0.2 \text{ ms}^{-1}$		Not given if g included or if pegative	
	v = 0.2 mb	R1	not given il g menueu or il negative.	
		[5]		
$(\mathbf{i})(\mathbf{a})$	+/(2400x + 3600x)	[J] D1	No marks in (ii) if a included	
$(\mathbf{n})(\mathbf{a})$	+/-(-24000 + 30000) 2400 $x5 = 2600 + 2400 + 26000 + 2600 + 26000 + 260000 + 26000 + 260000 + 2600000 + 260000 + $	DI M1	Founding momentums if "often" signs differ	
	2400x3 - 3000x3 = -24000 + 30000		Equating momentums in after signs differ	
(I -)	v = 1 ms L 2400 $\approx (5 + (1) \approx 2600 - (2 + (1)))$	AI	Do not accept 11 - Sign TOSt	
(D)	I = 2400 x (5+/-1) or 3600 x (3+/-1)	MI	A result 14400	
	$I = 14400 \text{ kgms}^{-1}$	AI	Accept -14400	
		[5]		

<i></i>			
6(i)	$x = 0.01t^4 - 0.16t^3 + 0.72t^2.$		
	v = dx/dt	M1	Uses differentiation, ignore +c
	$\mathbf{v} = 0.04t^3 - 0.48t^2 + 1.44t.$	A1	or v = $4(0.01t^3) - 3(0.16t^2) + 2(0.72t)$
	$v(2)=1.28 \text{ ms}^{-1}$ AG	A1	Evidence of evaluation needed
		[3]	
(ii)	a = dv/dt	M1	Uses differentiation
` ´	$a = 0.12t^2 - 0.96t + 1.44$	A1	or $a = 3(0.04t^2) - 2(0.48t) + 1.44$
	$t^2 - 8t + 12 = 0$ AG	A1	Simplifies $0.12t^2 - 0.96t + 1.44 = 0$ (or verifies the roots
		[3]	of OE make acceleration zero)
(iii)	(t - 2)(t - 6) = 0	M1	Solves quadratic (may be done in it if used to find $v(6)$)
(111)	(t-2)(t-0) = 0		Or Eactorises v into 3 linear factors M1
	t = 2		$v = 0.044(t-6)^2 = A1$ Identifies t= 6 A1
	1 = 0	AI D1	V = 0.04i(1-0) AI Identifies $i=0$ AI
	V(0) = 0 ms	DI [4]	Evidence of evaluation needed
<i>(</i> •)		[4] D1	
(iv)		BI	Starts at origin
		B1	Rises to single max, continues through single min
		B1	Minimum on t axis, non-linear graph
	Away from A	B1	
		[4]	
(v)	$AB = 0.01x6^4 - 0.16x6^3 + 0.72x6^2$	M 1	Or integration of $v(t)$, with limits 0, 6 or substitution,
	AB = 4.32 m	A1	using cv(6) from iii
		[2]	
	1		
7(i)	$(R=)0.2x9.8\cos 45$	M1	Not $F = 0.2x9.8\cos 45$ or $0.2x9.8\sin 45$ unless followed
	$F=1xR=1x.2x9.8\cos 45=1.386 N$ AG	A1	by (eg) $Fr = 1x F = 1.386$ when M1A1
		[2]	
(ii)	Any 1 application of N2L // to plane	M1	Must use component of weight
	with correct mass and number of forces		
	0.4a=0.2gsin45+0.2gsin45-1.38(592)	A1	
	$a = 3.465 \text{ ms}^{-2}$ AG	A1	
	0.2a = 0.2gsin45 - T or		Accept with 3.465 (or close) instead of a
	0.2a = T + [0.2gsin45 - 1.38(592)]	M 1	Accept omission of [term] for M1
	T = 0.693 N	A1	Accept 0.69
		[5]	
	OR		
	Any 1 application of N2L // to plane		
	with correct mass and number of forces		Must use component of weight
	0.2a = 0.2gsin45 - T or	M 1	Either correct
	0.2a = T + [0.2gsin45 - 1.38(592)]	A1	Both correct. Accept omission of [term] for A1 only
	Eliminates a or T	M 1	
	$a = 3.465 \text{ ms}^{-2}$ AG	A1	
	T = 0.693 N	A1	
(iii)	$v^2 = 2 \times 3.465 \times 0.5$	M1	Using $v^2 = 0^2 + 2xcv(3.465)s$
	$v = 1.86 \text{ ms}^{-1}$	A1	
		[2]	
(iv)	For Q		
	(0.2)a = (0.2)gsin45 - (1)(0.2)gcos45.	M1	Attempting equation to find a for Q
	a=0 [AG]	A1	Accept from 0.2gsin45 - 1.386
	T = (3/1.86) = 1.6(12)	B1	Accept 2 sf
	For P		1 1
	$a = 9.8 \sin 45$	B1	a= 6.93
	$2.5 = 1.86(14)t + 0.5 \times (9.8 \sin 45)t^2$	M1	Using $2.5 = cv(1.86)t + 0.5cv(6.93)t^2$ [not 9.8 or 3.465]
	t = 0.6(223)	A1	Accept 1sf
	time difference $1.612 - 0.622 = 0.99(0)$ s	Al	Accept art 0.99 from correct work
1	1.012 - 0.0022 = 0.0000 s		recept and only from control work

Г

4728 Mechanics 1

1 (i)		M1	Uses CoLM
	0.5x6 = 0.5x0.8 + 4m	A1	
	m = 0.65	A1	If g used throughout, possible 3 marks
		[3]	
		M1	After momentums opposite signs
(ii)	0.5x6 = -0.5x0.8 + 4m	A1	
	m = 0.85	A1	If g used throughout, 0 marks
		[3]	
2 (i)	T = 400 N	B1	Order immaterial
	D = 400 + 900	M1	Or T + 900; sign correct
	= 1300 N	A1	
		[3]	
(ii)			(Award M marks even if g included in ma terms.
			M marks require correct number forces)
		M1	Uses N2L one object only
	$500 \times 0.6 = T - 400$	A1	
	T = 700 N	A1	
		M1	Uses N2L other object
	$1250 \times 0.6 = D - 900 - 700$	A1ft	ft cv(T from (ii)); allow T instead of its value
	D = 2350 N	Al	
	OR		
		M1	Uses N2L for both objects
	$(500 + 1250) \times 0.6 = D - 400 - 900$	Al	
	D = 2350 N	Al	
2 (1)	5 20 5 : 60 4 22	[6]	
3 (1)	5cos30 or 5 sin 60 or 4.33	BI	Order immaterial, accept +/ May be awarded in
	5cos 60 or 5sin30 or 2.5	BI	(11) If no attempt in (1)
		[Z]	
(ii)		M1*	Subtracts either component from either force
	7-4.33 (= 2.67) and 9 - 2.5 (= 6.5)	A1	
	$R^2 = 2.67^2 + 6.5^2$	D*M	
	R = 7.03	1	3sf or better
	$\tan\theta = 6.5/2.67$	A1	Valid trig for correct angle
	$\theta = 67.6, 67.7 degrees$	D*M	3sf or better
		1	
		A1	
		[6]	
4 (i)	20cos 30	M1	Resolves 20 (accept 20 sin30)
	$20\cos 30 = 3a$	M1	Uses N2L horizontally, accept g in ma term
	$a = 5.77 \text{ ms}^{-2}$	Al	
		[3]	
(ii)		M1	Resolves vertically (accept -, cos if sin in i);
	$R = 3x9.8 + 20 \sin 30 (= 39.4)$	Al	correct no. terms
	$F = 20\cos 30 (= 17.3)$	BI	Correct (Neither R nor F need be evaluated)
	$1/.3 = 39.4\mu$	MI	Uses $F = \mu R$
	$\mu = 0.44$	AI	
1		[5]	

5 (i)	$V = \int 0.8t dt$	M1*	Attempt at integration
	$v = 0.8t^2/2 (+c)$	A1	Award if c omitted
	t = 0, v = 13, (c = 13)	M1	
	$v = 0.4x 6^2 (+c)$	D*M1	
	$v = 27.4 \text{ ms}^{-1}$	A1	
		[5]	
(ii)	$s = \int 0.4t^2 (+c)dt$	M1*	Attempt at integration of v(t)
	$s = 0.4t^{3}/3 + 13t (+k)$	A1ft	ft $cv(v(t) in (i))$
	t=0, s=0, (k=0)	M1	
	$s = 0.4x6^{3}/3 + 13x6$	D*M1	
	s = 106.8 m	A1	Allow if k=0 assumed. Accept 107 m.
		[5]	
(iii)	Fig. 2	B1	
		[1]	
	Fig.1 has zero initial velocity/gradient	B1	
	Fig. 3 does not have a increasing	B1	
	velocity/gradient	[2]	······
6 (i)	$2.5 = 9.8t^2/2$	M1	Uses $s = 0 + -gt^2/2$
a	t = 0.714 s or better or 5/7	A1	Not awarded if - sign "lost"
b		[2]	2
	$v^2 = 2x9.8x2.5 \ OR \ v = 9.8 \ x \ 0.714$	M1	Uses $v^2 = 0 + 2gs$ or $v = u + gt$
	$v = 7 \text{ ms}^{-1}$ or 6.99 or art 7.00	A1	Not awarded if - sign "lost"
		[2]	
(ii)	R = 2x9.8sin60 (= 16.97 = 17)	B1	With incorrect angle, e.g
		M1	$R = 2x9.8\cos 60 (=9.8) B0$
	F = 0.2x16.97 (=3.395 or 3.4)	A1ft	$F = 0.2x9.8 (=1.96) M1A1 \sqrt{10}$
	$Cmpt weight = 2x9.8\cos 60 (= 9.8)$	B1	Cmpt wt = $2x9.8sin60$ (=16.97) B0
	2a = 9.8 - 3.395	M1	2a = 16.97 - 1.96 M1
	$a = 3.2 \text{ ms}^{-2}$	Alft	a = 7.5 A1V ft cv(R and Cmpt weight)
	Distance down ramp = 5 m	BI	
	$v^2 = 2x3.2x5$	MI	$v^2 = 2x^2/.5x5$
	v = 5.66 or 5.7	Alft	v = 8.66 or 8.7 Alv ft $cv(v (10a))$
- (1)		[9]	
7 (1)	4 2 0 4 (2 2)	MI	Use of $v = u - 0.4t$
	p = 4 - 2x0.4 (= 3.2)	AI	
	q = 1 - 2x0.4 (= 0.2)	AI	Accept $q = -0.2$ from $-1+2*0.4$
		MI	Uses CoLM on reduced velocities
	0.7x3.2 - 0.3x0.2 = (1x)v	AI	
	$v = 2.18 \text{ ms}^2$	AI	
		[6]	

	B1	Straight line with larger y intercept slopes
		towards t axis, but does not reach it.
	B1	Straight line with negative y intercept slopes
		towards t axis,
	B1	and gets to t axis before other line ends.
	[3]	SR if t=2 in ii give B1 if line stops before axis
0 = 1 - 0.4t	M1	Finds when Q comes to rest (any method)
t = 2.5 s	A1	
	M1	Uses $s = ut - 0.4t^2/2$
$P = 4x3 - 0.5x0.4x3^2$	A1	
$Q = 1x2.5 - 0.5x0.4x2.5^2$	A1	(nb $0^{(2)} = 1^{(2)} - 0.4Q^2/2$ B1; convincing
PQ = 10.2 + 1.25 = 11.45 m	A1	evidence (graph to scale, or calculation that Q
-	[6]	comes to rest and remains at rest at t less than
		3, M1A1;graph A1 needs -ve v intercept)
		SR if t=2 in iib, allow M1 for s= ut - $0.4t^2/2$
		And A1 for PQ=8.4
	0 = 1 - 0.4t t = 2.5 s $P = 4x3 - 0.5x0.4x3^{2}$ Q = 1x2.5 - 0.5x0.4x2.5 ² PQ = 10.2 + 1.25 = 11.45 m	B1 B1 B1 B1 B1 B1 [3] M1 A1 P = $4x3 - 0.5x0.4x3^2$ Q = $1x2.5 - 0.5x0.4x2.5^2$ PQ = $10.2 + 1.25 = 11.45$ m [6]

Alternative for Q3 where 7 N and 9N forces combined initially

3 (i)	5cos30 or 5 sin 60 or 4.33	B1	Order immaterial, accept +/ May be awarded
	5cos 60 or 5sin30 or 2.5	B1	in (ii) if no attempt in (i)
		[2]	
(;;)	$7^{2} - 7^{2} + 0^{2} (-120 \ 7 - 11 \ 4017)$		7 is regultent of 7N and 0N foreas only
(11)	L = 7 + 9 (-130, $L = 11.4017$)		Z is resultant of 71v and 91v forces only
	$\cos(\text{angle of } Z \text{ with } y \text{ axis}) = 9/11.401/$		
	angle of Z with y axis = 37.8746		
	Angle opposite R in triangle of forces =		R is resultant of all 3 forces
	180 - (37.8746+90+30)	M1*	Complete method
	= 22.125 (Accept 22)	A1	-
	$R^2 = 5^2 + 11.4017^2 - 2x5x11.4017\cos 22.125$	D*M1	Cosine rule to find R
	R (= 7.0269) = 7.03 N	A1	
	$11.4017^2 = 5^2 + 7.0269^2 - 2x5x7.0269\cos A$		Or Sine Rule. A is angle between R and 5N
	(A = 142.33)		forces
	Angle between R and y axis = $142.33-30$ -	D*M1	
	90 (=22.33)		Complete method
	θ (= 90-22.33) =67.7 degrees	A1	θ is angle between R and x axis
		[6]	_

4728 Mechanics 1

1 i	$x^2 + (3x)^2 = 6^2$	M1	Using Pythagoras, 2 squared terms
	$10x^2 = 36$	A1	May be implied
	x = 1.9(0) (1.8973)	A1	Not surd form unless rationalised $(3\sqrt{10})/5$,
		[3]	(6\sqrt{10})/10
ii	$\tan\theta = 3x/x \ (= 3 \times 1.9/1.9) = 3$	M1	Must target correct angle.
	_		Accept $\sin \theta = 3 \times 1.9/6$ or $\cos \theta = 1.9/6$ which
	$\theta = 71.6^{\circ}$ (71.565)	A2	give θ =71.8°, θ =71.5° respectively, A1.
			SR θ = 71.6° from tan θ = 3 <i>x</i> / <i>x</i> if <i>x</i> is incorrect;
		[3]	x used A1, no evidence of x used A2
2 i		B1	Inverted V shape with straight lines.
		B1	Starts at origin, ends on <i>t</i> -axis, or horizontal
		[2]	axis if no labelling evident
ii		M1	Not awarded if special (right angled,
	6 = 3v/2	A1	isosceles) triangle assumed, or
	$v = 4 \text{ ms}^{-1}$	A1	s = (u+v)t/2, or max v at specific t.
		[3]	
iii	T accn = $4/2.4$ or s accn = $16/(2x2.4)$	M1*	Uses $t = v/a$ or $s = v^2/2a$.
	T accn = $1 \frac{2}{3}$ s or s accn = $10/3$	A1	May be implied
	Deceleration = $4/(3 - 12/3)$ or $16/2(6-10/3)$	D*M1	Accept 4/(3 - 1.67) or 16/2(6-3.33)
	Deceleration = 3 ms^{-2}	A1	Accept 3.01; award however $v = 4$ obtained in
		[4]	(ii). $a = -3$ gets A0.
2 :	0.9	D1	
31	0.8gsin30	BI D1	Not for 3.92 stated without justification
	0.8×0.2 0.8 × 0.8 sin 20 T = 0.8 × 0.2	DI M1	UF 0.10 Uses N2L // to slope 3 non zero terms inc ma
	T = 3.76 N		Not awarded if initial B1 withheld
	1-5.701	[4]	Not awarded if initial D1 withleid.
		[.]	
ii	$3.76 - F = 3 \times 0.2$	M1	Uses N2L, B alone, 3 non-zero terms
	F = 3.16	A1	Needs <i>correct value</i> of <i>T</i> .
	$3.16 = \mu x 3 \times 9.8$	A1	May be implied.
		M1	Uses $F = \mu R$ (Accept with $R = 3$, but not with
	$\mu = 0.107 (0.10748)$		$R=0.8g(\cos 30), F=0.6, F=3.76, F=f(\max P))$
		A1	Not 0.11, 0.108 (unless it comes from using
		[5]	g=9.81 consistently through question.

4 i	$v^2 = 7^2 - 2 \times 9.8 \times 2.1$ $v = 2.8 \text{ ms}^{-1}$	M1 A1 A1 [3]	Uses $v^2 = u^2 - 2gs$. Accept $7^2 = u^2 + 2gs$
ii	v = 0 $0^2 = 7^2 - 2 \times 9.8s$ s = 2.5 m	B1 M1 A1 [3]	Velocity = 0 at greatest height Uses $0 = u^2 - 2gs$. Accept $7^2 = 2 \times 9.8s$.
iii	v = -5.7 (or $t = 0.71$ oef to reach greatest height) -5.7 = 7 - 9.8t or $5.7 = (0+) 9.8Tt = 1.3(0)$ s (1.2959)	B1 M1 A1 [3]	Allows for change of direction Uses $v = u + \text{or} - gt$. Not 1.29 unless obtained from g=9.81 consistently
5 i	$0.5 \times 6 = 0.5v + m(v+1) 3 = 0.5v + mv + m v(m + 0.5) = -m + 3 $ AG	M1 A1 A1 [3]	Uses CoLM. Includes g throughout MR-1
ii	Momentum before = +/- $(4m - 0.5 \times 2)$ +/- $(4m - 0.5 \times 2) = mv + 0.5(v+1)$ $4m - 0.5 \times 2 = mv + 0.5(v+1)$ v(m+0.5) = 4m - 1.5	B1 M1 A1 A1 [4]	Includes g throughout MR-1 Needs opposite directions in CoLM on "before" side only. RHS in format am + b or b + am. Ignore values for a and b if quoted.
iii	4m - 1.5 = -m + 3 5m = 4.5 m = 0.9 kg $0.9 + v(0.9+0.5) = 3 \text{ or } 4 \times 0.9 - 1.5 =$ v(0.9+0.5) v = (3-0.9)/(0.9+0.5) = 2.1/1.4 $v = 1.5 \text{ ms}^{-1}$	M1 A1 M1 A1 [4]	Attempts to obtain eqn in 1 variable from answers in (i) and (ii) Ignore $m = -0.5$ if seen Substitutes for $m=0.9$ in any m , v equation obtained earlier.
6 ia b	Perp = 10cos20 (= 9.3967 or 9.4) // = 10sin20 (= 3.4202) μ = 10sin20/10cos20 = tan20 (= 3.42/9.4)	B1 B1 [2] M1	Includes g, MR -1 in part (i). Accept –ve values. Must use $ F = \mu R $
	$\mu = 0.364$ (0.36397) AG	A1 [2]	Accept after inclusion of g twice
ii	No misread, and resolving of 10 and T required $R = 10\cos 20 + T\cos 45$ $F = T\cos 45 - 10\sin 20$ or $T\cos 45 = \mu R + 10\sin 20$ $T\cos 45 - 3.42 = 0.364(9.4 + T\cos 45)$ 0.707T - 3.42 = 3.42 + 0.257T 0.45T = 6.84 T = 15.2 N (15.209)	M1* A1 M1* A1 D*M1 A1 A1 [7]	3 term equation perp plane, 2 unknowns 9.4 + 0.707T (accept 9.4+.71T) 3 term equation // plane, 2 unknowns 0.707T - 3.42 (accept 0.71T - 3.4) Substitutes for F and R in F=0.364R Award final A1 only for $T = 149$ N after using 10g for weight

7 i	$a = \frac{dv}{dt}$ $a = 6 - 2t \text{ ms}^{-2}$	M1 A1 [2]	Differentiation attempt. Answer 6- <i>t</i> implies division by <i>t</i>
ii	$s = \int vdt$ $s = \int 6t - t^{2} dt$ $s = 3 t^{2} - t^{3}/3 (+c)$ t = 0, v = 0, c = 0 $t = 3, s = 3x3^{2} - 3^{3}/3$ s = 18 m AG	M1* A1 B1 D*M1 A1 [5]	Integration attempt on v Award if limits 0,3 used Requires earlier integration Does not require B1 to be earned.
iii	Distance remaining (= $100 - 18$) = 82 Total time = $3 + 82/9$ $T = 12.1$ s ($12 \ 1/9$)	B1 M1 A1 [3]	Numerator not 100 Not 109/9
iv	Distance before slows = $18 + (22 - 3)x9$ Distance while decelerating = $200 - 189 = 11$ $11 = 9t - 0.3t^2$ or $11 = (9+8.23)t/2$ or $8.23 = 9-0.6t$ t = 1.28 (1.2765, accept 1.3) T = 23.3 s (23.276)	M1* A1 D*M1 A1 D*M1 A1 A1 [7]	(=189 m) Two sub-regions considered Accept 10.99. 10.9 penalise -1PA. Uses $s = ut - 0.5 \times 0.6t^2$, or $v^2 = u^2 - 2 \times 0.6s$ with s = (u+v)t/2 or $v=u+atFinds t. (If QE, it must have 3 terms andsmaller positive root chosen.)$

4728 Mechanics 1

1 i	$v = 4.2 + 9.8 \times 1.5$	M1	Uses $v = u + gt$
	$v = 18.9 \text{ ms}^{-1}$.	A1	18.9(15) from g = 9.81
		[2]	
ii	$s = 4.2 \times 1.5 + 9.8 \times 1.5^{2}/2$ or	M1	Uses $s = ut + gt^2/2$ or $v^2 = u^2 + 2gs$
	$18.9^2 = 4.2^2 + 2 \times 9.88$	1,11	0.000 s = u + g t / 2 or t = u + 2 g s
	s = 17.325 m	A1	Accept 17.3
		[2]	·
iii	$v^2 = 4.2 + 2 \times 9.8 \times (17.3(25) - 5)$	M1	$18.9^2 = u^2 + 2 \times 9.8 \times 5$
	$v = 16.1 \text{ ms}^{-1}$	A1	$u = 16.1 \text{ ms}^{-1}$.
		[2]	Accept answers close to 16.1 from correct
			working
2 i	Resolves a force in 2 perpendicular	M1	Diagram for vector addition/subtraction
	directions		
	Uses Pythagoras	DM1	Uses Cosine Rule
	$R^2 = (12+19\cos 60)^2$	Al	$R^2 = 12^2 + 19^2 - 120$
	$+(19sin60)^{2}$	Al	$2 \times 12 \times 19 cos 120$
	$R = 2/.1 \text{ N}$ $(R = 2/(10 + 12 \cos(6))^2 + (12 \sin(6))^2) = 27.1$	AI	R = 2/.1
	$\{\mathbf{R} = \mathbb{V}((19+12\cos 60) + (12\sin 60)) = 27.1\}$	[5]	
ii	Trig on a valid triangle for correct angle	M1	Fither Pythagoras or vector add/sub triangle
11	$\tan\theta = (19\sin 60)/(12 + 19\cos 60)$ etc	A1	$sin\theta/19 = sin120/(27.1)$ etc
	Angle is 37.4°, 37.5°	A1	
		[3]	
3ia	+/-(9m + 2 × 0.8) {+/-($3.5 \times 0.8 - 2 \times 0.8$)}	B1	Before mom, or mom change Q, OK with g
	$+/-(-3.5m + 3.5 \times 0.8) $ {+/-(9m + 3.5m)}	B1	After mom, or mom change P, OK with g
	$+/-(9m + 2 \times 0.8) = +/-(-3.5m + 3.5 \times 0.8)$	M1	Equates moms, or changes, accept with g
	m = 0.096 kg	A1	Do not award if g used
ib		[4]	
	+/-0.096(9+/-3.5) OR +/-0.8(3.5 -2)	Ml	Using before & after speeds of P or Q, no g
	+/-1.2 kgms	Alft	ft 12.5 \times cv(0.096)
ii	(0.8+0.4) v or $(0.8v + 0.4v)$	[2] M1	Using O and R common speed after no g
11	$(0.3+0.4)^{\circ}$ of 0.3° + 0.4 $^{\circ}$	A1	$28 \pm 11 - 12v$
	$v = 3.25 \text{ ms}^{-1}$	A1	2.0 + 1.1 = 1.2
		[3]	
4 ia	$0.39\cos 60$ and $0.39\sin 60$	B1	Accept use of " $m = 0.1 \text{ kg}$ " for M1 and
714	0.3gcos 60 and $0.3gsin 60$	B1	0.1gcos60 (B1) $0.1gsin60$ (B1)
	Calculates either relevant difference	M1	
	Perp = $0.1 \text{gcos} 60$ and Para = $+/-0.1 \text{gsin} 60$	A1	= 0.49 and $= 0.849$ (accept 0.85 and 0.84)
	1	[4]	
ib	$0.1gsin60 = \mu 0.1gcos60$	M1	$F = \mu R, F > R > 0$
	$= 1.73 (= \sqrt{3})^{-1}$	A1	From correct R, F values
		[2]	

4 ii		M1	N2L for either particle no resolving, at least 1 unknown Formula round the pulley, M0A0.
	$0.5\sigma - T = 0.5a$		But award M1 for 1-0.4g = 0.4×1.09 etc
	T - 0.4g = 0.4a	A1	Both equations correct
	$a = 1.09 \text{ ms}^{-2}$	B1	
	T = 4.36 N	B1	
		[4]	
5 i	11 = 3 + 20a (a = 0.4)	M1	Uses $v = u + at$, no zero terms
	8 = 3 + (11-3)t/20	M1	Their a>0. $t/20 = (8-3)/(11-3)$ is M1M1
	t = 12.5	A1	
••		[3]	
11	$S(A,20) = 8 \times 20 (=160)$ $S(B,20) = (3 + 11) \times 20/2 = -$	BI	$Or S(A) \equiv 81$
	$S(B,20) = (3+11) \times 20/2 =$ $3 \times 20+0.4 \times 20^2/2 (-140)$	B1	or as stage of $s(B) = (3+11) \times 20/2 + 11 \times (T-20)$
	$8T = (3+11) \times 20/2 + 11 \times (T-20)$	M1	3 part equation balancing distances
	or $(160 - 140) = 11t - 8t$	A1	
	T = 26 2/3	A1	Accept 26.6 or 26.7
		[5]	_
iii		B1	Linear rising graph (for A) starting at B's start
		D 1	Non-linear rising graph for B below A's
		BI	initially. Accept 2 straight lines as non-linear.
		B1	continue
		[3]	continue
<i>(</i> :	2 2 0 0000 0 18	MI	Differentiates of (not of (t))
01	$a = 2 \times 0.0001 - 0.18$ a = 0.012t = 0.18		Δ ward for unsimplified form accept $\pm c$ not
	a = 0.012t - 0.18	[2]	+k
ii	0.012t - 0.18 = 0	M1*	Sets $a = 0$, and solves for t
	t = 15	A1	
		D*M1	Substitutes t(v(min)) in v(t)
	$0.006 \times 15^2 - 0.18 \times 15 + k = 0.65$	A1	
	k = 2 AG	Al	
iii	$s = 0.006t^{3}/3 = 0.18t^{2}/2 + 2t(1-2)$	[5] M1A1	Integrates y (not multiplies by t) Award if to
m	s = 0.000t/3 - 0.16t/2 + 2t(+c) (s = 0.002t ³ - 0.09t ² + 2t(+c))	MIAI	omitted accept kt
	t = 0, s = 0 hence $c = 0$	B1	Explicit, not implied (or uses limits 0, 28.4)
	$L = 0.002 \times 28.4^3 - 0.09 \times 28.4^2 + 2 \times 28.4$	M1	Substitutes 28.4 or 14.2 in $s(t)$, (and $k=2$)
	L = 30.0 m	A1	Accept a r t 30(.0), accept +c
		[5]	

7 i	$(Fr =) 0.15 \times 600gcos10$ (Wt cmpt =) 600gsin10 600 × 0.11 = T - 0.15 × 600gcos10 - 600gsin10 (66 = T - 868.6 - 1021) T = 1960 N	B1 B1 M1 A1 A1 [5]	Implied by $Fr = 0.15 \times 600g\cos 10$ (=868.6) N2L. T with at least 1 resolved forces and 600×0.11 1955.6
ii a	$a(up) = +/-(600gsin10+.15\times600gcos10)/600$ $a(up) = +/-3.15 ms^{-2}$ AG	M1 A1 [2]	2 resolved forces and 600a or "unit mass" Disregard sign, accept 3.149
b	UP $v^2 = 2 \times 0.11 \times 10$ v = 1.48 when cable breaks t = 1.48/3.149 ($t = 0.471$ time for log to come to rest) $s = 1.48^2/(2 \times 3.149)$ s = 0.349 distance for log to come to rest	M1 A1 M1 M1 A1	Correct, need not be accurate Or $1.48 = 0 + 3.15t$ Correct, need not be accurate
	DOWN a(down) = $(600gsin10-0.15 \times 600gcos10)/600$ $10+0.349=0.254t^2/2$ t = 9.025 T = (9.025 + 0.471) = 9.5 s	B1 M1 A1 A1	= 0.254 Needs a< 3.15, s>10. Or V^2 = 2×0.254× (10+0.349) [V= 2.29], V=0.254t Correct, need not be accurate Accept 9.49

1	t = 5/1.2	M1	5=1.2t or 0=5-1.2t
i	t = 4.17 s	A1	4 1/6 s, 4.166 or better, 4.16 recurring.
-		[2]	
		[-]	
	$a = (5)^2 / 2 \pi 1.2$	M1	$a = 5^2/2x_1 + 2 \text{ or } 5^2 = 2x_1 + 2a \text{ or } 0 = 5^2 - 2x_1 + 2a$
11	s = (-5)/2x1.2	MI	S = 5/2X1.2 or $5 = 2X1.2S$ or $0 = 5 - 2X1.2S$
	s = 10.4 m	AI	Accept $10.5/12$, but not 10
	OR(using(i))	[2]	
	$s = 5x4.17 - 1.2x4.17^2/2$	M1	Time must be > 0 . Accept t from (i)
	s = 10.4 m	A1	Award if -4.17 used.
	OR(using(i))		
	$s = (5 (\pm 0))/2 \times 4.17$	M1	
	$s = \frac{104}{100}$	A 1	
	s = 10.4 m		
111	Fr = 3x1.2	BI	Accept 3.6, +/-
	$\mathbf{R} = 3\mathbf{x}9.8$	B1	Accept 3g, +/-
	$\mu = (3x)1.2/(3x)9.8$	M1	Ratio of 2 positive numerical force terms
	$\mu = 0.122$	A1	Not 0.12
	OR	[4]	
	$\mathbf{R} = 3\mathbf{v}\mathbf{Q}\mathbf{R}$	B1	$\Delta \operatorname{ccept} 3\mathfrak{a} + /$
	M = 3A/10 Mass y appolaration = $1/2\pi 1.0$	D1	1000pt 35, 17
	wass x acceleration = $+/-3x1.2$	ы	
	$+/-\mu x^{29.4} = +/-3x^{1.2}$	Ml	Either both positive or both negative.
	$\mu = 0.122$	A1	
2	+/-(0.4x3 - 0.6x1.5)	B1	+/- 0 3
;	1/(0.4x0 - 0.6x1.5)	D1 D1	Nh the terms have some signs
1	$+/-(0.4 \times 0.1 + 0.0 \times)$		
	(0.4x3 - 0.6x1.5) = +/-(0.4x0.1 + 0.6v)	MI	Equating their total mom before & after
	speed $ v = 0.433 \text{ ms}^{-1}$	A1	Accept 13/30 or 0.43 recurring, but not 0.43
	OR	[4]	
	+/-(0.4x3 - 0.4x0.1) = +/-1.16	B1	Momentum change of P
	(0.6v + 0.6x1.5) = 0.6v + 0.9	B1	Momentum change of O
	$1.16 - \pm \frac{1}{100} 6v \pm 0.9$	M1	Equating momentum changes
	1.10 = 17(0.00 + 0.0)		Equating momentum enanges $0.26/0.6 - u$
	speed $ V = 0.433 \text{ ms}$	AI	0.20/0.0 = V
11	$+/-(0.4 \times 0.1 - 0.6 \times 0.6 \times 0.1 - 0.6 \times 0.6 \times 0.1 - 0.6 \times 0.1 \times $	BI	Nb the terms have different signs
	(0.4x3 - 0.6x1.5) = +/-(0.6v - 0.4x0.1)	M1	Must use +/- same before momentum as in (i)
	v = 0.567	A1	May be implied, or in any format
	PO = 0.1x3 + 0.567x3	M1	(0.1 + 0.567)x3
	PO - 2 m	Δ1	$A_{ccept} = 2.00(1) + 2.0 + 2.00$
	1 Q - 2 m	[[]	Ассерт 2.00(1), 2.0, 2.00
		[5]	
	+/-0.4x3 + 0.4x0.1 and $+/-0.6v + 0.6x1.5$	BI	Both must be correct
	1.24 = +/-0.6v + 0.9	M1	Equating change in momentum
	v = 0.567	A1	May be implied, or in any format
	etc		
·			
3	$H = \pm -(9 - 5\cos 60)$	M1	$\pm (9 \pm 5\cos 120)$
;	H = 65 N		17 (2 + 5005120)
1	$\mathbf{n} = 0.5 \mathbf{N} \qquad \qquad \mathbf{AG}$	AI	
		[2]	
ii	$V = \pm -(12 - 5\sin 60)$	M1	$+/-(12 + 5\cos 150)$
1 11	V = 7.67 N	Λ1	Accent 7 666 or better or 7.6 recommine
	$\mathbf{v} = 7.07 \mathrm{IN}$		Accept 7.000 or better, or 7.0 recurring
		[2]	
iii	$R^2 = 6.5^2 + 7.67^2$	M1	Uses Pythagoras on forces V(ii) and 6.5
	R = 10.1 N	A1	10.053
	$\tan A = 6.5/7.67 \text{ or } 7.67/6.5$	M1	Uses trigonometry in relevant triangle
	A = 40(3) or 49.7	Δ1	May be implied by final answer
	11 - 70(.3) 01 - 7.7	A1	A sthis is not a final answer
			As this is not a final answer, exact accuracy is
			not an issue
	Bearing = 320°	A1	Or better
		[5]	
L		[[-]	1

4	$3.2 - 0.2t^2 = 0$	M1	Puts 0 for v and attempts to solve QE
i	t = 4 s	A1	Accept dual solution +/-4
		[2]	-
ii	a = -2x0.2t	M1*	Differentiates v
	a = -0.4x4	D*M1	Substitutes +ve t(i) in derivative of v
	$a = -1.6 \text{ ms}^{-2}$	A1	Negative only
		[3]	
iii		M1*	Integrates v, not multiplication by t
	$s=3.2t - 0.2t^3/3 (+c)$	A1	
	t = 0, s = 0 so $c = 0$	B1	Or correct use of limits 0 and 4
	$s(4) = 3.2x4 - 0.2x4^3/3$	D*M1	Accept without/loss of c
	s = 8.53 m	A1	8 8/15 Accept with/without c
		[5]	

5	+/-3x20/2	M1	Use area of <u>scalene</u> triangle(s). Not suvat.
i	30 m	A1	Accept -30
		[2]	-
ii		M1	Equates scalene trapezium area to distance (i)
	$(t+4)x^{3/2} = 30 \text{ or } 3t/2 = 30 - 4x^{3/2}$	A1	[(T-60)+4]x3/2 = 30, award A2
	t = 16 or t = 12	A1	
	T = 76	A1	
		[4]	
iii	T(accn) = 3/0.4 (=7.5 s)	B1	
	decn = 3/([76-60] - 4 - 7.5)	M1	Or $3 = \text{decn } x ([76-60] - 4 - 7.5)$
	decn = $(+/-) 2/3 \text{ ms}^{-2}$	A1	(+/-) 0.667 or better - accept 0.6 recurring
	OR	[3]	
	$S(accn) = 3^2/(2x0.4)$ (= 11.25 m)	B1	
	decn = $3^2 / [2x(30 - 3x4 - 11.25)]$	M1	
	decn = $(+/-) 2/3 \text{ ms}^{-2}$	A1	(+/-) 0.667 or better - accept 0.6 recurring
6	$T - 0.85g \sin 30 = 0.85a$	B1	Either equation correct
i	0.55g - T = 0.55a	B1	Both eqns correct and consistent 'a' direction
а	a = 1.225/1.4	M1	Solves 2 sim eqn
	a = 0.875	A1	
	T = 4.91	A1	4.908 or better – has to be positive
		[5]	
b	$F = 2T\cos 30$	M1	Or Pythagoras or cosine rule
	F = 8.5(02)	A1ft	$cv(4.91)x\sqrt{3}$
		[2]	
ii		M1	Uses $v^2 = u^2 + 2a(1.5)$, u non-zero, a from (i)
	$v^2 = 1.3^2 + 2x0.875x1.5 (=4.315)$	A1ft	$v = 2.077(v^2 = 1.69 + 3xcv(0.875))$
	a = +/-gsin30	B1	a = +/-4.9
	0 = 4.315 - 2x4.9s	M1	Uses $0^2 = u^2 + (-2as)$, with a not g or (i), u not1.3
	(s = 0.44)	A1	May be implied – need not be 3sf
	S = 1.94	A1	
		[6]	

7	Fr = 4 + 5sin60	M1	All $4 + \text{component } 5(4 + 4.333(01))$
i	Fr = 8.33	A1	May be implied
	$R = 12 - 5\cos 60$	M1	+/-(All 12 - component 5 (12 - 2.5))
	$\mathbf{R} = 9.5$	A1	May be implied +ve from correct work
	$\mu = (4 + 5\sin 60)/(12 - 5\cos 60)$	M1	Friction/Reaction $Fr>4$ R<12 both positive
	$\mu = 0.877$	A1	
	$\mu = 0.017$	[6]	
ii	Upper block		
	$\mu = 5\sin 60/(9-5\cos 60)$ (=4.3/6.5)	M1	(Component 5)/(9-component 5)
	$\mu = 0.666$	A1	(·····································
	μ 0.000	[2]	
iii	Upper mass $= 9/g$	B1	0.918(36.)
	$(9/g)_{2} = 5 \sin 60 = 0.1(9 = 5 \cos 60)$	M1	N2L $0.918(36)_{2} - 4.33(01)_{-} - 0.1x65$
	$(y/g)a = 5 \sin 60 - 0.1(y - 5 \cos 60)$	1411	where friction = $0.1x(0, \text{component } 5)$
	a = 4.01	Δ1	where $\operatorname{Hieron} = 0.1 \times (9 \operatorname{-component} 3)$
	a = 4.01	ЛІ	
	Lower mass Tractive force $-4 \pm 0.1(0.5\cos 60) (-4.65)$	M1	Compares TE (treative force) and may friction
	$M_{\text{av}} = \frac{1}{2} $	1011	Compares IF (tractive force) and max inculoi
	$\frac{1}{10000000000000000000000000000000000$	A 1	
	ractive force < Max Friction	AI	
	a = 0	AI	
	OR for Lower Mass	[6]	
	$ma = 4+0.1(9-5\cos 60)-0.87/(3+9-5\cos 60)$	MI	N2L with 3 force terms:
	-ve a caused by friction impossible, hence	AI	
	a = 0	A1	

1	$\Delta Mom P = 0.5(2.4 + 0.2)$	M1	$\pm - 0.5(2.4 \pm 0.2)$	MR P/Q +/-0.8(1.5+/-0.2) M1A0
i	$\Delta Mom P = +/-1.3 \text{ kgms}^{-1}$	A1		
		[2]		
ii	Momentum before = $0.5x2.4 - 0.8x1.5$	B1	+/-(0.5x2.4 - 0.8x1.5)	Cont MR 0.5x2.4-0.8x1.5
		M1	Uses mom before = mom after	Uses mom before = mom after
	0.5x2.4 + - 0.8x1.5 = + -(-0.5x0.2 + - 0.8v)	A1ft	Cv(Expression for before momentum)	0.5x2.4 + -0.8x1.5 = + -(0.8x0.2 + -0.5v)
	Speed = 0.125 ms^{-1}	A1	1/8, +ve (not 0.13)	0.32 B1 M1A1A1 ft
	OR	[4]		
	$\Delta Mom Q = +/- (+/-0.8v - 0.8x1.5)$	B1		
		M1	Uses $\Delta Mom P = \Delta Mom Q$	
	1.3 = +/-(0.8v - 0.8x1.5)	A1ft	Cv(ans(i)) = +/-(+/-0.8v - 0.8x1.5)	
	Speed = 0.125 ms^{-1}	A1	1/8, +ve (not 0.13)	
2	$10 \text{CorS}\alpha = 8$	M1	Component of $10 = 8$	CorS is Cos or Sin (passim)
i	$10\cos\alpha = 8$	A1		
	$\alpha = 36.9^{\circ}$	A1	Accept 37 36.8 and 37 from 36.7	Do not accept 36.7
	OR	[3]		
	$10 \text{CorS}\alpha = \text{F}$	M1	Using value of F(ii)	
	$10\sin\alpha = 6$	A1ft	Using F(=6) from (ii)	
	$\alpha = 36.9^{\circ}$	A1		
	OR			
	$\tan\theta = F/8$		OR $tan\theta = 8/F$, using value of F from (ii)	
	$\tan \alpha = 6/8$	A1ft		
	$\alpha = 36.9^{\circ}$	A1		
ii		 M1	F = 10 CorSa	
	$F = 10\sin 36.9$	Alft	Allow 10Cos53.1	
	F = 6 N	A1	Accept 6.01 (or from 10Cos53.1) or 6.0	anything rounding to 6.0 from correct working
	OR	[3]		
		M1	Pythagoras, 3 squared terms	Accept $F^2 = 8^2 + 10^2$
	$F^2 + 8^2 = 10^2$	A1	- ,,,	
	F = 6 N	A1		

3		M1	Uses $v^2 = u^2 + 2gs$ u non-zero	It is common to see the upwards and downwards
i	$v^2 = (+/-5)^2 + 2x9 8x2.5$	A1	$2505 v = u \pm 255, u \text{ non } 2010$	motion treated separately Both parts must be
-	Speed (or v) = $8.6(0)$ ms ⁻¹	A1	Accept $\sqrt{74}$ Do not accept -8 6(0)	attempted for M1 and both parts must be
	OR			attempted accurately with cys for the A1
	$0 = 5^2 - 2x9$ 8xs with $y^2 = (0) + 2x9$ 8(s+2.5)		s = 1.2755	
	$v^2 = 2x9 8x(2.5+1.28)$	A1	19 8x3 7755	
	Speed = $8.6(0) \text{ ms}^{-1}$	A1	Or rounds to 8.6	
ii		M1	Uses v(from (i)) = $\pm -5 \pm 9.8t$	It is common to see the upwards and downwards
	86 = -5 + 98t	Alft	Cy(8 60 from (i)) = 17.5 + 7.5	motion treated separately Both parts must be
	Time = 1.39 s	A1		attempted for M1 and both parts must be
	OR	[3]		attempted accurately with cys for the A1
		[3] M1	$+/-25 - 5t +/- gt^2/2$	attempted accurately with evs for the All
	$9.8t^2 - 10t - 5 - 0$	Δ1	172.5 - 5017 gt 12	
	Time = 1.39 s	A1		
	OR	111		
	OK	M1	$25 - \pm \frac{1}{2}$ (5 - Speed from (i)) x t / 2	
	25 - (86-5)t/2	$\Delta 1 ft$	2.5 = 1/2 (5 - Speed from (i)) x t / 2 Cy(8 60 from (i))	
	$2.5 = (0.0-5)\sqrt{2}$ Time = 1.39 s			
	OR	ЛІ		
	OK	M1	Times to top and ground found and added	
	$t = 5/0.8 \pm 8.6/0.8$	A 1 ft	$C_{V}(8.60 \text{ from (i)})$	
	$T = 3/9.0 \pm 0.0/9.0$			
	1 mic = 1.57	ЛІ		
iii	7	B1	Straight descending line to t axis	Ignore values written on diagrams
a)	v, ms^{-1}	B1	Continues straight below t axis	ignore values written on diagrams
<i>u)</i>		DI	Continues straight below t axis	
b)		B1	Inverted "parabolic" curve starts anywhere on t=0	
0)	x, m	DI	inverted parabolic eurve, starts anywhere on t=0	
		B1	Ends below $t = 0$ level need not be below taxis	
		101	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$	
		[4]		
	t, s	[+]		
1				

4	$2 - F = 0.8 \times 0.2$	M1	N2L 2 force terms and ma $(F = 1.84 \text{ N})$	m is the block mass, award if T not F
i	$F = T\cos 10$	M1	F = TCorS10	
	T = 1.87 N	A1	1.8683	
	OR	[3]		
		M1	N2L 2 force terms and ma	
	$2 - T\cos 10 = 0.8x0.2$	M1	TCorS10	
	T = 1.87 N	A1		
ii	R - 0.3x9.8 + TCorS10 = 0	M1	3 term equation, vertically	Treat as a mis-read R- $0.8x9.8$ -TCorS $10 = 0$
	R = 0.3x9.8 - 1.87sin10	A1ft	cv(T(i))	leading to R=8.16 (i.e.works on block[2/3]
	R = 2.62	A1ft	2.61(5) seen or implied	
	$T\cos 10 - Fr = 0.3x0.2$	M1	N2L 2 forces for P, component of T	OR N2L 2 forces for P+Q:
	Fr = 1.78	A1ft	cv(T(i)) seen or implied	2 - Fr = (0.8 + 0.3)x0.2
	$\mu = 1.78 / 2.62 \text{ OR } 1.78 = 2.62 \mu$	M1	both terms same sign	R, Fr unequal to T
	$\mu = 0.68$	A1		From correct value of $T = 1.87$ only
		[7]		
5		M1	s=ut+0.5at ² used along plane or vertically, with	
ia	$s(P) = 4.9T + 0.5x 4.9T^2$	A1	u = 4.9 or 0, and $a = 4.9$ or 9.8 appropriately	
	$y(Q) = (0) + 0.5x9.8T^2$	A1	Accept use of t or T Allow g in Y(Q)	
		[3]		
b	$(m)x4.9 = (m)gsin\theta$	M1*	Allow CorSθ	$\sin\theta = (0.5 \times 9.8 \text{ T}^2)/(4.9 \text{ T} + 0.5 \times 4.9 \text{ T}^2)$ gets
	$\theta = 30$	A1		M1, but in ic. Beware circular argument.
		[2]		
с	$y(Q)/s(P) = sin\theta$ OR $y(Q) = s(P) sin\theta$	M1	Uses appropriate trigonometry to relate distances	This may appear in b)
	$0.5x9.8(2/3)^2 / (4.9x2/3 + 2.45(2/3)^2 = 0.5$		Verification needs explicit value of $sin(cv(\theta ib))$	$0.5 \times 9.8 (2/3)^2 = (4.9 \times 2/3 + 2.45 (2/3)^2 \times 0.5)$
	OR $0.5x9.8T^2 / (4.9T + 2.45T^2) = \sin 30$	D*M1	Ratio of distances considered using cv (30)	OR $0.5 \times 9.8 \text{T}^2 = (4.9 \text{T} + 2.45 \text{T}^2) \times \sin 30$
	T= 2/3 s AG	A1		
		[3]		
ii	v = 4.9 + 4.9x2/3 OR v = (0) + 9.8x2/3	M1	Uses $v = u + at$, with appropriate u, a values once	
	$v = 8.17 \text{ ms}^{-1}$	A1	8.2	
	$w = 9.8x2/3 = 6.53 ms^{-1}$	A1	6.5	
1		[3]		

6 i	$ \begin{array}{l} x = \int t^2 - 9 \ dt \\ x = t^3/3 - 9t \ (+c) \\ Finds \ x(2) \\ Displacement = 15\frac{1}{3} \ m \\ OR \\ x(2) = [t^3/3 - 9t]_0^2 \\ Displacement = 15\frac{1}{3} \ m \end{array} $	M1* A1 D*M1 B1 [4] D*M1 B1	Uses integration of v(t) Award if +c omitted Allow + c or c omitted Accept 15.3, 46/3. Must be +ve Uses limits[] $_0^2$ on integrated x(t) Must be +ve	Awarded if c omitted or assumed 0
ii	t=0 s=0 or s=46/3 hence x(0) or c= 0 or 46/3 Solves $t^2 - 9 = 0$ t = (±)3 x(3) = 3 ³ /3 -9x3 (+ 15.3) x(3) = -18 (or -2.67) Dist = 18 m	B1* M1* A1 D*M1 M1 D*B1 [6]	Needs explanation, may be seen in part iMay be impliedValue of t when direction of motion changesSubstitutes $cv(t) > 2$ in integrated $x(t)$ Evaluates $c - 18$ may be implied award ifAccept 18(.0)	B1* awarded if limits 0 and 3 used correctly Awarded if limits used correctly
iii	$a = d(t^{2} - 9)/dt$ a = 2t 10 = 2t t = 5 $x(5) (= 5^{3}/3 - 9x5 + 15.3) = 12 \text{ m}$ OR $[t^{3}/3 - 9t]_{2}^{5} = 12 \text{ m}$	M1* A1 D*M1 A1 A1 [5] A1	Uses differentiation of v(t)	

ſ	7	Wt cmpts: // plane 0.6gsin30	B1	+/-2.94	
	i	Perp plane 0.6gcos30	B1	+/-5.09(22.) = R	
			M1	N2L // plane, 2 force terms and ma (allow no g)	
		0.6gsin30 + X = 0.6x10	A1ft	Both weight cmpt and accn signs same	Accept Fr for X
		X = +/-3.06	A1	May be implied (Fr =0.6x10-0.6gsin30 used)	
		$\mu = 3.06 / 5.09(22)$	M1	Uses $\mu = Fr/R$ both terms same sign	Accept $Fr = X $
		$\mu = 0.601$	A1	0.6	
		OR	[7]		
		$3.06 = \mu x 5.09(22)$	M1	Uses $Fr = \mu R$ both terms same sign	Accept $Fr = X $
		$\mu = 0.601$	A1	0.6	
	ii	$C^2 = 3.06^2 + 5.09^2$	M1	Pythagoras with Fr and R, to find hypotenuse	
	a)	C = 5.94 N	A1	Accept 5.9, 5.95 but not 6(.0)	
		$\tan\theta = 3.06/5.09(22)$	M1*	Or $\tan\theta = \mu$	
		Angle = $(31) + 90$	D*M1		
		Angle = 121°	A1	Not 120	
		OR	[5]		
		$\tan \varphi = 5.09(22)/3.06$	M1*	$\tan \varphi = 1/\mu$	
		Angle = $180 - (59)$	D*M1		
		Angle = 121°	A1	Not 120	
	b)	C (= 0.6x9.8) = 5.88 N	B1	5.9	No working needed as C is vertical
		Angle = 60°	B1		No working needed as C is vertical
			[2]		

4	7	2	8
---	---	---	---

Question			Expected Answer	Mark	Rationale/Additional Guidance
1			$R^2 = 8^2 + 15^2$	M1	Uses Pythagoras 3 squared terms, addition
			R = 17 N	A1	
			$\cos\theta = 15/17$	M1	Uses trig appropriately and targets either angle
			$\theta = 28.1^{\circ}$	A1	Accept 28°, 0.49 rad
				[4]	
2	i	Also	T - 0.45g = 0.45x0.98	M1	N2L on 0.45 kg, weight - tension and +/-0.98m
		if in	T = 4.85(1) N	A1	Not 4.9, 4.8 (4.851 is exact, but 4.85 acceptable)
		ii		[2]	$\{g=9.81 \rightarrow T=4.85 \text{ or } 4.86 \text{ or better}\}$
	ii	Also	mg - 4.85(1) = 0.98m	M1	N2L on Q, weight – tension, tension=T(i), and 0.98m
		If in	m = 4.85(1)/(9.8-0.98) or $m(g - 0.98) = 4.85(1)$	A1ft	Simplified to a single term in m, ft $cv(T(i))$
		i	m = 0.55	A1	art 0.550
			OR	[3]	$q=9.81 \rightarrow m=0.55(0)$ or better
			0.98 = q (m - 0.45)/(m + 0.45)	M1	$a = q \times \Delta(masses) \Sigma(masses)$
			$m = (q+0.98)/(q-0.98) \times 0.45$	A1	
			m = 0.55	A1	
	iii		$v^2 = (0 +) 2x0.98x0.36$	M1	Uses $v^2 = u^2 + 2as$, a not 9.8, 2as>0, $u = 0$ or omitted
			$v = 0.84 \text{ ms}^{-1}$	A1	
				[2]	
	iv		$0 = 0.84^2 - 2x9.8s$	M1	$0 = (cv(iii))^2 - 2gs$, or t=cv(iii)/g and s = ut+/-gt ² /2
			(s = 0.036)	A1	May be implied by final answer (eg 0.396)
			S = 0.036 + 2x0.36 = 0.756 m	A1	Must be 3 sf (exact)
				[3]	$\{g=9.81 \rightarrow s=0.756 \text{ or better}\}$

		Frequent mis-read "horiz	ontal/vertical" MR version in {}		Allow all A1 marks in (i) and (ii) except final A1 in (ii).
3	i	$R = 0.8g - 6\cos 60$	$\{R = 0.8g - 6sin60\}$	M1	Resolves vertically, (R=) difference of 2 forces
					inc. component of 6
		R = 4.84	$\{R = 2.64\}$	A1	Accept 4.8 {2.6}
				[2]	$\{g=9.81 \rightarrow R=4.848 \ \{2.65\}; accept 4.8 \ \{2.6 \text{ or } 2.7\} \}$
	ii	Fr = 0.2x4.84 (=0.968)	{ Fr = 0.2x2.64(=0.5287)}	M1	Uses F=0.2(cv(i)) or F=0.2x(R found in (ii) by a method
					which would be given M1 in (i))
				M1	Uses N2L, 3 terms inc. component of 6
		6sin60 - 0.968 = 0.8a	{6cos60 - 0.5287 = 0.8a}	A1	Fr need not be evaluated
		a = 5.29 ms ⁻²	{a = 3.09 ms ⁻² A0}	A1	Accept 5.3
				[4]	{g=9.81→ a=5.28 {3.09 A0} Accept 5.3 {3.1 A0}
	iii	Fr = 0.2x0.8x9.8 (= 1.568	3)	B1	Uses Fr = 0.2x0.8g
		0.8a = -0.2x0.8x9.8		M1*	N2L, Fr only, accept use of Fr from (ii)
					Accept 0.8a = 0.2x0.8x9.8, (a = (-)1.96)
		0 = 4.9 - 1.96t		D*M1	Accept $4.9/1.96$, not $0 = 4.9 + 1.96t$
		t = 2.5 s		A1	Accept art 2.50
				[4]	{g=9.81→ t=2.50 Accept art 2.50}
4	i	a = 15/6 or d = 15/2		M1	Uses a = speed change/time
		$a = 2.5 \text{ ms}^{-2}$		A1	
		d = 7.5 ms ⁻²		A1	Accept -7.5
				[3]	
	ii	T = 6+11+2 (=19)		M1	Accounts for totality of car journey (may be implied)
		x = 15(11+19)/2 or 15x6/	2+15x11+15x2/2	M1	Idea area = distance SR Accept 15x(13+17)/2 M1M1
		x = 225 m		A1	
				[3]	
	iii	Walks = $20x(-)2 = (-)40$ r	n	M1	Finds distance walked
		Jogs = 40/5 = 8 s		A1	
		$I_s = 60 - (\{6+11+2\} + 20)$	(+ 8)	M1	I_s + ({6+11+2} + 20 + 8) = 60, needs all time elements
		I _s = 13 s		A1	
				[4]	

5	i	$V_{\rm P} = 3 - 2.5 \times 0.4 \ (= 2)$	M1	Calculation of either speed, either directions, a =2.5
		$V_Q = 2.5 \times 0.4 (= 1)$	A1	Both magnitudes correct (disregard signs)
		+/-(0.5x2 - 0.2x1) (=+/-0.8)	B1	Momentum before
		$0.5x^2 - 0.2x^1 = 0.5v + 0.2x^3.2$	M1	Uses conservation of momentum in collision
				(not both $v_{\rm P} = 3$ and $v_{\rm O} = 0$)
		$(v = 0.32) 0.32 \text{ ms}^{-1} \text{ up}$	A1	Accept "same", value positive
			[5]	
	ii	$V_{0} = 3.2 - 2.5 \times 0.6 \ (=1.7)$	M1	Calculation of either speed with its correct time, a =2.5
		$V_{R} = 2.5 \times (0.4 + 0.6) (= 2.5)$	A1	Both magnitudes correct (disregard signs)
			M1	Uses momentum conservation in collision
				(not both $v_0 = 3.2$ and $v_p = 0$)
		0.2x1.7 - 0.3x2.5 = (0.2+0.3)y	A1ft	LHS different signs. RHS same signs.
				ft cv(speeds Q_R)
		$(v = -0.82) 0.82 \text{ ms}^{-1} \text{ down}$	A1	Value positive
			[5]	
			[0]	
6	i	"smooth ring". "no friction at ring"	B1	If a variety of reasons is offered, "smooth ring" must
			[1]	be the last
	ii	$T\cos\theta + 5 = T\cos(90-\theta)$	M1	"Resolves horiz" equation, needs TCorS0, 3 terms, 2 of
		$T\cos\theta + 5 = T\sin\theta$ (a)	A1	which are T resolved
		$T\sin\theta + T\sin(90-\theta) = 7$	M1	
		$T\sin\theta + T\cos\theta = 7$ (b)	A1	"Resolves vert" equation, needs TCorS0, 3 terms, 2 of
			[4]	which are T resolved
				{Allow candidates solving for (iii) to begin in (ii)}
	iii	uses (b)+(a) and (b)-(a) for example	M1*	Attempts to solve 2 equations in 2 unknowns
		$T\sin\theta = 6 \text{ or } 2T\sin\theta = 12$, $T\cos\theta = 1 \text{ or } 2T\cos\theta = 2$	A1	Both terms have values correct
		$T^2 = 6^2 + 1^{(2)}$	D*M1	
		T = 6.08 N	A1	Accept √37, 6.1
		$Tan\theta = 6(/1)$	D*M1	Uses a correct trig identity
		$\theta = 80.5^{\circ}$	A1	Accept 81°, 1.4 rad, 1.41 rad
		OR	[6]	
		(b) gives T=7/(sin θ +cos θ), subs in (a) for example	M1*	Attempts to solve 2 equations in 2 unknowns
		$12\cos\theta = 2\sin\theta$	A1	Correct two term equation in one variable
		then mark as 6(iii) below for D*M1 A1 D*M1 A1		

7	i	v = dx/dt	M1	Uses differentiation of x
		$v = 0.3t^2 - 0.6t + 0.2$	A1	
		a = dv/dt	M1	Uses differentiation of v
		a = 0.6t - 0.6	A1ft	Correct differentiation of candidate's v(t)
			[4]	
	ii	0.6t - 0.6 = 0 (t = 1)	M1*	Attempts to solve a=0
		$x(1) = 0.1x1^3 - 0.3x1^2 + 0.2x1$	D*M1	Puts solution in x formula
		x(1) = 0 AG	A1	
		OR	[3]	
		$0.1t^3 - 0.3t^2 + 0.2t = 0$ (t=1, and disregard others)		Attempts to solve x=0
		a(1) = 0.6x1 - 0.6		Puts solution in a formula
		a(1) = 0		
	iii	$0.3t^2 - 0.6t + 0.2 = 0$	M1	Attempts to solve 3 term $QE v = 0$, accept imperfect
				attempt at formula, completing square or factorisation
		t = 0.423 s	A1	Accept 1 - $1/\sqrt{3}$, 0.42, 0.422, or better
		t = 1.58 s	A1	Accept 1 + $1/\sqrt{3}$, 1.6, 1.57, or better
			[3]	
	iv	$x = \int 0.2t^2 - 0.4dt$	M1*	Uses integration, ignore omission of k
		$x = 0.2t^{3}/3 - 0.4t$ (+k)	A1	$x = 2t^{3}/30 - 4/10 t (+k)$, or coeff $t^{3} 0.067$ or better
		$0.1t^3 - 0.3t^2 + 0.2t = 0.2t^3/3 - 0.4t (+k)$	D*M1	Equates expressions for distance
		$t^3 - 9t^2 + 18t = 0$	D*M1	3 terms with different powers of t, no constant
		$t^2 - 9t + 18 = 0$ AG	A1	Explains T is non-zero, or explains division by t
		(t-3)(t-6)=0	M1	Tries to solve given quadratic, accept imperfect
				attempt at completing square, formula or factorisation,
				and chooses smaller positive root
		T = 3 s	A1	
			[7]	
		Total	[72]	

Continued

C	Question		Answer		Guidance
1	(i)		Total momentum before = $0.3 \times 2.2 + 0.5 \times 0.8$ Mom P after = $0.3 \times 2.2/2$ $0.3 \times 2.2 + 0.5 \times 0.8 = 0.3 \times 2.2/2 + 0.5v$ $v = 1.46 \text{ ms}^{-1}$	B1 B1 M1 A1 [4]	Allow inclusion of g 0.33, accept 0.33g and negative term Allow $0.33g = 0.5gv - 0.5g \times 0.8$ M1 Allow from inclusion of g
1	(ii)		$PQ = 3 \times 1.46 - 3 \times 2.2/2$ PQ = 1.08 m	M1 A1 [2]	3(1.46 – 2.2/2) Accept 3 × 1.46 – 2.2/2
2	(i)		$36 = 0 + - a24^{2}/2$ $a = + - 0.125 \text{ ms}^{-2}$ OR $U = \pm 24a \text{ and } 0^{2} = (24a)^{2} \pm 2a36$ $a = \pm 0.125 \text{ms}^{-2} = \pm \frac{1}{8} \text{ms}^{-2}$	M1 A1 [2] M1 A1	$s = vt - at^{2}/2 = 0^{+}/- at^{2}/2 \text{ OR } s = ut^{+}/- at^{2}/2$ Use both $0 = u \pm 24a$ and $0^{2} = u^{2} \pm 2a36$ $U = 3 \text{ ms}^{-1}$
2	(ii)		(180/g)a = Fr $Fr = \pm 2.3(0) N$ $\mu = 2.3/180$ $\mu = 0.0128$	M1 A1 M1 A1 [4]	Mass = 18.367kg. Regard $180a = Fr$ as MR May be implied. $Fr = 22.5$ MR -1 Fr and R both +ve or both -ve, $\mu = 22.5/(180 \times 9.8)$ if MR Award if MR
3	(i)		$v = \pm \int -8 + 0.6t dt$ $v = \frac{+}{-}(-8t + 0.6t^{2}/2) (+ c)$ $v = 32.5 - 8t + 0.3t^{2}$ AG	M1 A1 A1 [3]	Integrates accn or decn (Although only $v = -8t + 0.6t^2/2$ (+ c) is correct) ONLY FROM $v = \int -8 + 0.6t dt$ OR $v = -\int 8 - 0.6t dt$ and explicit $t = 0$, $v = 32.5$ so $c = 32.5$
3	(ii)		$0.3t^2 - 8t + 32.5 = 0$ t = 5	M1 A1 [2]	Starts to solve 3 term QE, either the given ans in (i) or the candidate's answer in (i) with v set = 0. Needs valid formula or factors which give 2 correct coefficients Accept as one of a pair only if the other value is $65/3 = 21.66$

G	Question		Answer		Guidance
3	(iii)		$s = \int 0.3t^2 - 8t + 32.5 \mathrm{d}t$	M1	Integrates an expression for velocity
			$s = 0.3t^3/3 - 8t^2/2 + 32.5t (+c)$	A1	Accept omission of <i>c</i>
			$D = 0.3 \times 5^{3}/3 - 8 \times 5^{2}/2 + 32.5 \times 5 (+ c)$	M1	Substitutes cv(smaller and +ve ans(ii)) or uses limits, $[]_0^{smaller+vecv(ii)}$
			<i>D</i> = 75 AG	A1	Explicit evaluation needed. Accept $+ c$
				[4]	
4	(i)		$(X=)15 - 20\cos 60, 15 - 20\sin 30$ $OP(X=)8 - 20\cos 30, 8 - 20\sin 60$	M1	Accept (X =) $15 + 20\cos 120$, (Y =) $8 + 20\cos 150$, and R A = 100°
			(X =) 5 N (34.048 if in rad mode)	A1	Must be +ve
			(Y =) -9.32 N (4.9149 if in rad mode)	A1	Must be –ve. Allow 8-10 $\sqrt{3}$
				[3]	
4	(ii)		$R^2 = (+/-9.32)^2 + 5^2$	M1	Uses Pythagoras on ans(i), neither component 8 or 15
			R = 10.6 N	A1 ft	$\sqrt{(X(\mathbf{i})^2 + Y(\mathbf{i})^2)}$
			$\tan\theta = (+/-9.32)/5$	M1	Finds any relevant angle with 8 N or 15 N, neither component 8 or
			Angle = 152°	A1	15 CAO must be 3sf or better
			111610 - 102	[4]	
4	(iii)		(Greatest =) 43 N	B1 D1	
			(Least =) 0 N	[2]	
				[=]	
5	(i)		$S_{\rm dec} = 15 \times 4 - 1.75 \times 4^2 / 2$	M1	Or $v = 15 - 1.75 \times 4$ and $s = (15 + v)/2 \times 4$
			$S_{\rm dec} = 46$	A1	May be implied
			$100 - 46 = 157/2 + 15(10 - 4 - 7) \qquad (= 15 \times 6 - 157/2)$		Any attempt at combined 3 stage distances being 100 Simplification not accordial ft $av(S_{-}(i), pymprical)$
			54 - 90 - 7.51 T = 4.8	AIII A1	Simplification not essential. If $CV(S_{dec}(I), numerical)$
				[5]	
			2 2		
5	(ii)		$V_R = d(3t^2 - 0.2t^3)/dt$	M1	Attempt at differentiating S_R
			$V_R = 6t - 0.6t^{-1}$ $V_R = 6t - 0.6t^{-1}$		Accept $V_R = 2 \times 3t - 3 \times 0.2t^2$ Must show explicit substitution
			$V_R(3) (= 0 \times 3 - 0.0 \times 3) = 13 \text{ ms}$ AG	[3]	Must show explicit substitution

G	Question	Answer		Guidance
5	(iii)	$A_R = d(6t - 0.6t^2)/dt$	M1*	Attempt at differentiating V_R
		6 - 1.2t = -1.75	D*M1	Must be -1.75 or $1.2t - 6 = 1.75$ (i.e. employs <u>deceleration</u>)
		t = 6.46	A1	
			[3]	
5	(in)	$S_{1}(10) = 2 \times 10^{2} - 0.2 \times 10^{3}$	M1	Substitutes 10 into 5 formula
5	(1V)	$S_R(10) = 3 \times 10^{-} = 0.2 \times 10^{-}$ $S_{-}(10) = 100^{-}$		Substitutes to find S_R formula
		$S_R(10) = 100$	[2]	
		OR	[#]	
		$3t^2 - 0.2t^3 = 100$	M1	Sets up and tries to solve equation for robot
		t = 10 which is how long the athlete takes to finish	A1	Needs comment about athlete or both finishing race in 10 s
6	(i)	$R = 0.3g\cos 30$	B1	R = 2.546 N. May be shown on diagram
		$Fr = 0.15 \times 0.3g\cos 30$	M1	$0.15 \times cv(R), Fr = 0.382$
		$0.3a = -0.3g\sin 30 - 0.15 \times 0.3g\cos 30$	M1	N2L, two forces inc. 0.3gCorS30 and friction
		a = -6.17	A1	Accept positive value
		$0 = 4^2 - 2 \times 6.17s$	M1	Using <i>a</i> from above
		s = 1.3(0) m	A1ft	ft(8/ cv(a))
			[6]	CorS30 means cos30 or sin30
			N/1	
0	(11)	$0.3a = 0.3g\sin 30 - 0.382$		N2L, diff. of two forces inc. 0.3gCorS30 and friction
		a = 3.03 1.2 - 2.62 ² /2	AI M1	Using $ay(a(i))$ and a not $a(i)$ nor 0.9
		1.5 - 5.05l/2		$\begin{array}{c} \text{Osling CV(s(1)), and a not a(1) not 9.8} \\ \text{Bounds to () 85 if 2 sig fig} \end{array}$
		l = 0.045 S	[4]	CorS30 means $\cos 30$ or $\sin 30$
			ניין	
6	(iii)	$V = 3.63 \times 0.845 \ OR \ V = \sqrt{(2 \times 3.63 \times 1.3)} \ OR \ V = 2 \times 1.3/0.845$	M1	$cv(a(\mathbf{ii}) \times t(\mathbf{ii})) OR cv(\sqrt{2 \times a(\mathbf{ii}) \times s(\mathbf{i})} OR cv(2 \times s(\mathbf{i})/t(\mathbf{ii})),$
		(V=3.07)		<i>a</i> (ii) not <i>a</i> (i) nor 9.8
		Mom change = $+/-(0.3 \times 4 + 0.3 \times 3.07)$	M1	+/-(0.3×4 +/- $0.3 \times$ speed(return)), 0 <speed(return) 4,="" <="" g="" omitted<="" th=""></speed(return)>
		Mom change = ± -2.12 kgms ⁻¹	A1	
			[3]	
1				
1				
1				

C	Question		Answer		Guidance	
7	(i)	(a)	0.45a = 0.45g - 2.52 a = 4.2 ms ⁻²	M1 A1 [2]	N2L for R. 2 vertical forces. Accept +/- $0.45a = 0.45g$ +/- 2.52 Accept -4.2	
7	(i)	(b)	$0.05 \times 4.2 = 0.05g + 2.52 - T$ $T = 0.05 \times 9.8 + 2.52 - 0.05 \times 4.2$ T = 2.8 N	M1 A1 ft A1 [3]	N2L for Q, 3 vertical forces, $0.05 \times 4.2 = 0.05g +/-2.52 +/-T$ accn not 9.8; 0.5g is TWO vertical forces $(0.45g + 0.05g)$ not MR ft cv($a(\mathbf{i})$). Any equivalent form of equation ACCEPT A COMBINED Q AND R METHOD $(0.45 + 0.05) \times 4.2 = 0.45g + 0.05g +/-T$ M1 $(0.45 + 0.05) \times 4.2 = 0.45g + 0.05g - T$ A1ft T = 2.8 N A1	
7	(ii)		$\pm 4.2m = T - mg$ OR $\pm 4.2 = (0.05g + 0.45g - mg)/(0.05 + 0.45 + m)$ $4.2m = 2.8 - mg \ OR \ 9.8m + 4.2m = 2.8$ m = 0.2	M1 A1 ft A1 [3]	N2L for P, difference of 2 vertical forces, accn $cv(a(\mathbf{i}))$ $\pm cv(a(\mathbf{i})) = (wt P + wt Q - wt R) / sum of masses$ ft $cv(T(\mathbf{ib}))$ Any equivalent form of equation with $cv(a(\mathbf{i}))$	
7	(iii)		BEFORE R STRIKES SURFACE $v = 4.2 \times 0.5$ v = 2.1 $s = 2.1^2/(2 \times 4.2) = 4.2 \times 0.5^2/2$ AFTER R STRIKES SURFACE +/-0.2a = T - 0.2g OR $+/-0.05a = 0.05g - T+/-0.2a = T - 0.2g$ AND $+/-0.05a = 0.05g - Ta = +/-5.88S = 2.1^2 / (2 \times 5.88)TOTAL JOURNEYDistance = (0.375 + 0.525) = 0.9m$	M1* A1 M1 M1 A1 A1 D*M1 A1 [8]	Find Speed when R hits surface, using $a(\mathbf{i})$ Distance R falls (0.525 m). Accept +/-4.2 × 0.5 ² /2 N2L for either P (with cv(<i>m</i>)) or Q Correct equations for both P and Q <i>OR</i> combination 0.05g (- <i>T</i> + <i>T</i>) – 0.2g = +/-(0.2a + 0.05a) M1A1 Distance P rises after R hits ground (0.375), <i>a</i> not $a(\mathbf{i})$ or 9.8	

Mark Scheme

C	Question		Answer		Guidance
1	(i)		$F^2 = 17^2 - 8^2$	M1	$F^2 = 17^2 + -8^2$
			F = 15	A1	Exact accept 15.0
			$\cos\alpha = 8/17$	M1	Correct method for angle between 8 N and 17 N forces
			$\alpha = 61.9^{\circ}$	A1	Accept 62° from correct work
				[4]	
1	(ii)		E = 17	B1	Exact
			Angle = $118(.1)^{\circ}$ OR $242^{\circ}(241.9^{\circ})$	B1 FT	$180 - cv(\alpha(\mathbf{i}))$ OR $180 + cv(\mathbf{a}(\mathbf{i}))$ Must be 3sf or better
				[2]	
2	(i)		$v = 7 - 0.4 \times 9.8$	M1	v = 7 + -0.4g
			$v = 3.08 \text{ ms}^{-1}$	A1	Exact, or correct to 3sf from g=9.81(3.076) or 10 (3)
			$s = 7 \times 0.4 - 9.8 \times 0.4^2/2$	M1	$s = 7 \times 0.4 + -g0.4^2/2$
			s = 2.016 m	A1	Exact but accept 2.02. g=9.81 (2.0152) or g=10 (2)
			OR	[4]	
			$3.08^2 = 7^2 - 2 \times 9.8s$	M1	$(cv(v))^2 = 7^2 + 7 - 2gs$
			s = 2.016 m	A1	Exact but accept 2.02. g=9.81 (2.0152) or g=10 (2)
			OR		
			$v^2 = 7^2 - 2 \times 9.8 \times 2.016$	M1	$v^2 = 7^2 + 2g(cv(s))$
			$v = 3.08 \text{ ms}^{-1}$	A1	Exact or correct to 3sf. Accept v= 3.07 from s= 2.02 . From $z=0.81(2.076 \text{ cm} 2.06 \text{ from s} = 2.02)$ or $10.(2)$
2	(;;;)		$H = +7^2/(2 \times 0.8)$ (-+2.5)	D1	g=9.81(3.070 of 3.00 from s=2.02) of 10(3)
2	(11)		$\frac{11 - \pm 7}{(2 \times 9.6)} (- \pm 2.3)$ S = $\pm (7 \times 0.0 - 16 \times 0.8 \times 0.0^2) (- \pm 2.221)$	DI D1	Greatest Height, $g=9.81$ (2.497 accept 2.3) $g=10$ (2.45) Height when $t=0.0$, $g=0.81$ (2.22605) $g=10$ (2.25)
			D = 25 + (25 - 2231)	M1	$\frac{1161}{2} = \frac{10}{2} = \frac{10}{2$
			D = 2.5 + (2.5 - 2.551) D = 2.660 m		$2 \times \text{greatest neight} = 5(0.5)$ Exact but accord 2.67, $g=0.81$ (2.66705) $g=10$ (2.65)
			$D = 2.009 \text{ III}$ OR (Using $t_{\rm V} = 7/9.8 - 0.7143$, $t_{\rm D} = 0.9 - 0.7143 - 0.1857$ s)	[4]	"OR" method uses distance from greatest height
			$H = + (7x07143 - 98x07143^{2}/2) (= +25)$	B1	OR $\pm 9.8 \times 0.7143^2/2$. Gains B1 for <i>H</i> as above
			$s_{\rm D} = \pm 9.8 \times 0.1857^2 / 2 \ (= \pm 0.169)$	B1	Equivalent to B1 for S as above
			D = 2.5 + 0.169	M1	Greatest height + Descent distance $\ll H$
			D = 2.669 m	A1	Exact but accept 2.67, g=9.81 (2.66705) g=10 (2.65)

⁴⁷²⁸

Question		on	Answer		Guidance
3	(i)		$(10-8)/5 = T_{dec}$ OR $8 = 10 - 5T_{dec}$	M1	Attempt to find $T_{dec} = \pm 0.4 = \pm 2/5$
			$t \ (= 2 - 0.4) = 1.6$	A1	Exact. Accept 1 3/5, not 8/5, www
				[2]	
3	(ii)		$S_B = \frac{1}{2} \times 8 \times 2$	B1	$S_B = 8$
			$S_A = 10 \times 1.6 + \frac{1}{2} \times (10 + 8) \times 0.4$ OR	M1	Using area under graph is distance (at least two parts)
			$S_A = 10 \times 2 - \frac{1}{2} \times (2 - 1.6) \times (10 - 8)$		Complete method for S_A run in the first 2s, using $cv(t)$
			$S_A = 19.6$	A1	Accept as $16+3.6$ or $20-0.40$, from $t = 1.6$ (however obtained)
			AB = 19.6 - 8 + 1	M1	$AB = +/-(S_{\rm A} - S_{\rm B} +/-1)$
			AB = 12.6 m	A1	Exact Or $AB = -12.6$ m
				[5]	
4	(i)		$Fr = 14\cos 30$	B1	12.1(24)
			$R = 28 - 14\sin 30$	B1	21
			$(14\cos 30) = \mu (28 - 14\sin 30)$	M1	12.1(24)/21. Allow component of 14 / cv(<i>R</i>) for M1
			$\mu = 0.577$ AG	A1	0.577(35)
				[4]	
4	(ii)		Mass = 28/g	B1	2.857 Award here if seen in (i) and used in (ii)
			$Fr = 0.577 \times 28$	B1	16.156 or 0.57735 x 28 = 16.1658
					Award also for $cv(m)$, $m = 28$. Must be only one force (friction),
			$(28/9.8)a = \pm 0.577 \times 28$	M1	allow <i>Fr</i> (i).
			$a = \pm 5.66$ from exact μ , $a = \pm 5.65$ from $\mu = 0.577$	A1	$g=10 (\pm 5.77)$
			$0 = u^2 - 2 \times 5.66 \times 3.2$	M1	Valid signs with cv(5.66)
			$y = 6.02 \text{ m s}^{-1}$	A1	Accept any answer rounding to 6.0 (inc 6.0, not 6) or 6.1 from
					g=10
				[6]	

4728

C	Question		Answer	Marks	Guidance
5	(i)			M1	N2L on P , two vertical forces, accept with $0.4x2.45g$
			$T - 0.4g = 0.4 \times 2.45$	A1	Correct terms and signs
			T = 4.9 N	A1	Exact, g=9.81 (4.904, accept 4.9) g=10 (4.98, not 5.0)
				[3]	
5	(ii)		$mg - T = \pm 2.45m$	M1	Correct terms (possible incorrect signs), and use of cv(T(i))
			m = 2/3 kg	A1 FT	FT $cv(T(i))/7.35$, g=9.81 (FT $cv(T(i))/7.351 = 0.667$)g=10 (FT $cv(T(i))/7.55 = 0.6596 = 0.66$)
					This may be seen in (i). The M1A1 pair of marks may be awarded only in part (ii) when the candidate uses the value of m which was found in (i).
			$v = 2.45 \times 0.3 \ (= 0.735)$	B1	Must be positive
			Momentum = $(2/3) \times (2.45 \times 0.3)$	M1	Accept \pm . $cv(m) \ge cv(v)$
			Momentum $loss = 0.49 \text{ kgms}^{-1}$	A1	Exact, but accept any value which rounds to ±0.490. g=9.81 (0.49) g=10 (0.4848=0.485, not 0.48)
				[5]	
5	(iii)		$S = 2.45 \times 0.3^2/2$	M1	Distance while <i>Q</i> descends. Watch for $s = vt - at^2/2$. If $v=0$, M0A0
			$S = \pm 0.11(025)$	A1	
			OR		
			$S = (0+0.735) \times 0.372$		MI Using landing speed from (11)
			$S = \pm 0.11(025)$	N/I	Al
			$0 = (2.45 \times 0.3) \pm 2 \times 9.8s$ s = ±0.027(56.)		Distance P ascends while Q at rest, must use g May be implied, $g=0.81$ (0.02753) $g=10$ (0.0270)
			$OR (using t_{A} = 0.735/9.8 = 0.075)$	AI	Calculating ascend time after string goes slack
			$s = 0.735 \times 0.075 - 9.8 \times 0.075^{2} / 2$		M1 Using candidate's values of speed and t_A to find $\pm s$
			s = +0.027(56)		A1 May be implied
			Distance = 0.248 m	A1 FT	$2 \times cv(S) + cv(s) $, Accept 0.25, g=9.81 (0.248) g=10 (0.247511)
				[5]	

C	Question	Answer	Marks	Guidance
6	(i)	$mg = 6.4\cos 40$	M1	One cmpt of 6.4 N force (allow 6.4 x sin/cos 40 or 50), mg not
				resolved
		m = 0.5(00)	A1	Accept 0.5, g=9.81 (0.49976=0.5) g=10 (0.49026 = 0.49)
			[2]	
6	(ii)	$H = 6.4 + 6.4 \sin 40$		Resolves horizontally, all necessary terms
		OR	M1	(allow e.g. $6.4 \pm 6.4 \cos 40$)
		$2 \times 6.4 \cos 25 = 0.5g \cos 65 + H \cos 25$		Resolves parallel to bisector of strings, inc cmpt weight
		H = 10.5	A1	Accept 11
			[2]	
6	(iii)	$R = 32\cos 30 - 6.4\sin 30$	M1	Difference of Wt cmpt and Tension (<u>not</u> <i>H</i>) cmpt
		R = 24.5	A1	May be implied
		$Fr = 32\sin 30 + 6.4\cos 30$	M1	Sum of Wt cmpt and Tension (not H) cmpt
		Fr = 21.5	A1	May be implied
		$\mu = (32\sin 30 + 6.4\cos 30)/(32\cos 30 - 6.4\sin 30)$	M1	Either Fr or R obtained from 2 term numerical expressions, in Fr
				$ =\mu \mathbf{R} $
		$\mu = 0.879 \qquad \qquad \text{AG}$	A1	
			[6]	
6	(iv)	$F_{\rm max} = 0.879 \times 32 \cos 30 \ (= 24.4 \ {\rm N})$	B1*	May be described simply as F or friction
		Wt cmpt down slope = $32\sin 30$ (= 16 N)	D*M1	Finding Wt component down slope and comparing with friction
		Remains in eqbm	A1	Needs Wt cmpt = $16 < F_{\text{max}}$
		OR	[3]	
		$\pm ma = 32\sin 30 - 0.879 \times 32\cos 30$	B1*	For friction calculation
		Finds acceleration	D*M1	Sets up and solves N2L for a
		Remains in eqbm	A1	Needs <i>a</i> clearly in direction of friction (impossible)
		OR		
		angle of friction = $\tan^{-1}0.879 = 41^{\circ}$	B1*	
		Slope is 30°	D*M1	Must be explicit
		Remains in eqbm	A1	Values of angle of friction and slope stated in 6(iv)

C	luesti	on	Answer	Marks	Guidance
7	(i)		Before mom = $0.2 \times 4 + 0.3 \times 2.5$	B1	Accept with g
			$0.2 \times 4 + 0.3 \times 2.5 = (0.2 + 0.3)v$	M1	Accept with g
			$v = 3.1 \text{ ms}^{-1}$	A1	Exact. Award if g used and cancelled.
				[3]	
7	(ii)	(a)	$V_0 = 3.1$	B1 FT	FT cv(v(i))
				[1]	
7	(ii)	(b)	$s = \int 3.1 - 3t^2 \mathrm{d}t$	M1*	Uses integration of velocity(t)
			$s = 3.1t - 3t^3/3 (+c)$	A1 FT	FT $cv(v(i))$ or $cv(V_0(iia))$
			$CR = [3.1t - t^3]_0^{0.3}$	D*M1	Uses their $s(0.3)$. Award if + <i>c</i> never shown or assumed = 0
			CR = 0.903 m	A1	Ans <u>not</u> given, so explicit substitution not needed. Allow 0.90, not
					0.9
				[4]	
7	(ii)	(c)	$a = d(V_0 - 3t^2)/dt$	M1*	Uses differentiation of v
			$a = -6 \times 0.3$	D*M1	Substitutes $t = 0.3$ (no other value acceptable)
			$a = -1.8 \text{ ms}^{-2}$	A1	Exact. Must be negative (accept deceleration is -1.8). Award if V_0 wrong but not if V_0 omitted.
				[3]	
	(iii)		Mom $C = (0.2 + 0.3)(3.1 - 3 \times 0.3^2)$	B1	1.415
			Conservation of momentum used, no g	M1	Before momentum must be numerical, after momentum needs two terms in v (accept 2v or v)
			$(0.2 + 0.3)(3.1 - 3 \times 0.3^2) = 1.5v - 0.5v$	A1FT	FT cv(before momentum)
			$v = 1.415 \text{ ms}^{-1}$	A1	Exact. Accept 1.41 or 1.42.
				[4]	

(Questio	n	Answer		Marks	Guidance
1			X = 14 - 5		B1	Or 5 – 14
			$R^2 = (14 - 5)^2 + 12^2$		M1	Pythagoras, R as hypotenuse, 3 squared terms
			R = 15 N		A1	
			$\tan\theta = (14 - 5)/12$		M1	Any correct trig, angle between 12 and R targetted.
			$\theta = 36.9^{\circ}$		A1	Accept 37, 037
					[5]	
2	(i)		$v = d(t^4 - 2t^3 + 5)/dt$		M1*	Differentiates displacement, one wrong term max, ignore +c
			$v = 4 \times 1.5^3 - 6 \times 1.5^2$		D*M1	Substitutes $t = 1.5$ in $v(t)$ OR solves $4t^3-6t^2=0$ for a +ve root
			v = 0	AG	A1	0+c is A0 unless c is discarded
					[3]	
2	(ii)		$a = \mathrm{d}(4t^3 - 6t^2)/\mathrm{d}t$		M1*	Differentiates velocity, one wrong term max, ignore +c
			$a(1.5) = 12 \times 1.5^2 - 12 \times 1.5$		D*M1	Substitutes $t = 1.5$ in $a(t)$ OR solves $12t^2 - 12t = 9$ for a +ve root
			$a = 9 \text{ m s}^{-2}$	AG	A1	9+c is A0 unless c is discarded
					[3]	
3	(i)		TCorS20 = 0.25 g CorS30		M1	Equates cmpt T and cmpt wt // plane (doubt, see diagram and/or (ii))
			$T\cos 20 = 0.25g\sin 30$		A1	1.225
			T = 1.3(0)		A1	
					[3]	
3	(ii)		R + - T CorS20 = + - 0.25 g CorS30		M1	Resolves perp plane, accept letter T
			$R + 1.3\sin 20 = 0.25g\cos 30$		A1 ft	ft(cv(T))
			R = 1.68 N		A1	
					[3]	
3	(iii)		(m)accn = +/-(m)9.8sin30		M1*	N2L with single force a cmpt wt (accept cos)
			a = +/-4.9		A1	
			$u = +/-9.8\sin 30 \times 0.4$		D*M1	
			u = 1.96		A1	Must be +ve (accept loss of – sign)
					[4]	

⁴⁷²⁸

(Questio	n	Answer	Marks	Guidance
4	(i)		(t-3)(t-6) = 0	M1	Solve 3 term QE, 2 correct coefficients if factorising, or using formula $9+/-\sqrt{9}/2$
			t = 3, 6	A1	"By inspection" both values M1A1, one value M0A0
				[2]	
4	(ii)		$v = \int (t^2 - 9t + 18) \mathrm{d}t$	M1*	Attempts integration of $a(t)dt$, maximum one wrong term
			$v = t^3/3 - 9t^2/2 + 18t (+ c)$	A1	Accept omission of $+c$
			$3^3/3 - 9 \times 3^2/2 + 18 \times 3 + c = 9$	D*M1	Uses $v(3) = 9$
			$(v =) -13.5 \text{ m s}^{-1}$	A1	Must be negative, and goes beyond c=-13.5
				[4]	
4	(iii)		v(1) = 1/3 - 9/2 + 18 - 13.5 = 0.333	M1	Finds $v(1)$ (=1/3)
			Changed sign so direction of motion has changed	A1	Accurate values $(v(0)=-13.5, v(0.5)=-5.58, v(0.9)=-0.702)$
				[2]	
5	(i)		$1.4^2 = 2 \times a \times 0.2$	M1	Any use of $a = g$ is M0
			OR		
			0.2=(0+1.4)t/2 and $1.4=0+at$. 1	$t=2/7$ hence $1.4=a \times 2/7$
			$a = 4.9 \text{ m s}^{-1}$	AI	
			$0.3g - T = +/-0.3 \times 4.9$	M1	N2L diff of weight and tension. Any use of $a = g$ is M0
			T = 1.47 N	A1	
				[4]	
5	(ii)		+/-4.9m = 1.47 - mg	M1	N2L for <i>Q</i> using values from (i), <i>a</i> not <i>g</i> ; accept $a = g\Delta M/\Sigma M$
			4.9m = 1.47 - mg	A1ft	Diff cv(T) and mg correct way round; ft cv(<i>T</i> , <i>a</i>) 4.9 = g(0.3 - m)/(0.3 + m) M1A1; ftcv(<i>a</i>)
			m = 0.1	A1	
				[3]	
5	(iii)		$1.4^2 = 2gs$	M1	Accn = g
			<i>s</i> = 0.1	A1	may be implied (eg $H = 0.3$) BoD sign uncertainty
			H = 0.2 + 0.2 + 0.1	M1	Needs 0.2 twice
			H = 0.5 m	A1	
				[4]	

(Questio	on	Answer	Marks	Guidance
5	(iv)	(a)	Tension = $0.5g + 2 \times 1.47$	M1	
			Tension = 7.84 N	A1	
				[2]	
5	(iv)	(b)	Tension $(= 0.5g) = 4.9$ N	B1	
				[1]	
6	(i)			M1	Cons of momentum, no g^* , common v "after" term
			0.3x4 - 0.2x5 = +/-(0.3 + 0.2)v	A1	0.3x4 + 0.2x5 = +/-(0.3+0.2)v is M1A0A0
			$v = 0.4 \text{ m s}^{-1}$	A1	Must be positive
				[3]	*Allow g if fully cancelled in first line BOD
6	(ii)	(a)	Q (or P at rest)	B1	If P moves, allow 0.3vwhen considering M1
				M1	Cons of momentum, no g^* , one "after" term
			0.3x4 - 0.2x5 = 0.2v	A1	0.3x4 + 0.2x5 = 0.2v is M1A0A0
			$v = 1 \text{ m s}^{-1}$	A1	
				[4]	*Allow g if fully cancelled in first line BOD
6	(ii)	(b)	4t + 5t = 3.6	M1	Or $9t = 3.6$, Or both $3.6-x = 4t$ and $x = 5t$
			t = 0.4	A1	
			$x_{\rm Q} = 5 \times 0.4 \; (=2)$	A1	Finds initial Q distance. 3.6 x 5 /(4+5) is M1A1A1
			T = (2/1 =) 2 s	A1	
			OR	[4]	
			(Time =)	M1	Equates pre-collision times
			x/5 = (3.6 - x)/4	A1	x is distance Q travels before collision
			x = 2 m	A1	
			T = 2/1 = 2 s	A1	
6	(ii)	(c)		B1	One horizontal, +ve v intercept
			v P	B1	One horizontal, $-ve v$ intercept, terminates at same t
			4 Q	B1	One along <i>t</i> -axis, starts at same t as +ve line ends, label P
				B1	One horizontal above <i>t</i> -axis, starts at same <i>t</i> as –ve line ends.
					(Ignore any values put on graphs)
			-5		
				[4]	

Question		0 n	Answer	Marks	Guidance
7	(i)		$Fr = 0.2 \times 0.4gcos45$	M1	Fr = 0.554(37)
			$0.4a = 0.4g\sin 45 - 0.554(37)$ (= 2.21748)	M1	N2L, their Fr value and cmpt wt, opposite signs
			a = 5.54(37)	A1	May be implied
			$v^2 = 5^2 + 2 \times 5.54 \times 2$	M1	$v^2 = u^2 + 2as$, <i>a</i> is not 0.2 <i>g</i> . 0< <i>a</i> < <i>g</i> . Consistent signs
			$v = 6.87 \text{ m s}^{-1}$	A1	
			6.87 = 5 + 5.54t	M1	$2 = 5t + 5.54t^2/2$, <i>a</i> is not 0.2 <i>g</i> . 0< <i>a</i> < <i>g</i>
			t = 0.337 s	A1	
				[7]	
7	(ii)	(a)	$+/-0.4a = -0.4g\sin 45 - 0.55437$ (= 3.3262)	M1	N2L, Fr and cmpt wt same sign (accept +ve)
			$a = \pm -8.31(557)$	A1	Accept +ve value
			$0^2 = 5^2 - 2 \times 8.32 \times s$		$5^2 = 2 \times 8.32 \times s$, <i>a</i> is not g or 0.2 <i>g</i> . Consistent signs.
			s = 1.5(0) (so does not reach B)	A1	cso
			OR	[3]	
			$v^2 = 5^2 - 2 \times 8.32 \times 2$		
			$v^2 = -ve (-8.28)$ so does not reach B	A1	Some comment on impossibility
7	(ii)	(b)	$v^2 = 2 \times 5.54(37) \times 1.5$	M1*	No A1 to be given for $s = 1.5$ (if last A1 not given in iia), <i>a</i> is
					not g or $0.2g$ or their a in 7iia allow $a > g$
			v = +/-4.08	A1	
			Momentum change = $+/-0.4(4.08 + 5)$	D*M1	Must be a sum of 5 and a speed meaningfully less than 5
			Change = $+/-3.63$ kg m s ⁻¹	A1	
				[4]	

⁴⁷²⁸

4728

Question		n Answer	Marks	Guidance
1	(i)		M1	Momentum for Q/R , no g, at least 3 correct terms
		$0.3u + 0.6 \times 0.8 = (0.3 + 0.6) \times 1$	A1	NB 0.48 in "before" from 0.8×0.6 ; not $1.5 \times 0.1 + 1.1 \times 0.3$ (A0)
		$u = 1.4 \text{ m s}^{-1}$	A1	
			[3]	
1	(ii)	$0.1 \times 1.5 + 0.3 \times 1.1 = \pm 0.1v + 0.3 \times 1.4$	M1	P,Q +ve "before", allow P –ve "after". Accept cv (1.4)
		<i>v</i> = 0.6	A1	Velocity of <i>P</i> , will be –ve if $-0.1v$ in momentum equation, accept $v = \pm 0.6$
		Momentum change = ± 0.09 kg m s ⁻¹	A1	Tolerate loss of – sign if "small – large" has +ve answer
		OR	[3]	
		Momentum change $Q = \pm 0.3(1.4 - 1.1) = \pm 0.09$	M1A1	Change for P is the change for Q
		Momentum change $P = \pm 0.09$	A1	
		OR		
		$0.1 \times 1.5 + 0.3 \times 1.1 + 0.6 \times 0.8 = (\pm)0.1v + 0.9(\times 1)$	M1A1	Overall equation
		Momentum change $P = \pm 0.09$	A1	From $\pm (0.9 \times 1 - 0.3 \times 1.1 - 0.6 \times 0.8)$
2	(i)	U = 0.5g OR $U - 0.5g = 0$	M1	Consider descent <i>OR</i> ascent. $v = u + at$ with consistent signs for non-zero terms. $U + 0.5g = 0$ is M0 hence A0.
		$U = 4.9 \text{ m s}^{-1}$	A1	Allow use of 4.9 without penalty in (ii) and (iii) even if 0/2 here.
			[2]	
2	(ii)	$U^2 = \pm 2gs$	M1	$v^2 = u^2 + 2as$
		$4.9^2 = \pm 2 \times 9.8 \times s$	A1	
		s = 1.225 m	A1	+ve, 49/40, 1.22 or 1.23 BoD loss of – sign in final answer
			[3]	
		OR		2
		$s = \pm (ut \pm gt^2/2) OR s = \pm gt^2/2$	M1	Rise to/fall from greatest height. $S = \pm (vt \pm g\frac{\tau}{2})$ is similar.
		$s = \pm (4.9 \times 0.5 - g \times 0.5^2/2) \ OR \ s = \pm g \times 0.5^2/2$	A1	
		s = 1.225 m	A1	+ve, 1.22 or 1.23 BoD loss of – sign in final answer
		OR		
		$s = \pm Ut/2$	M1	s = (u+v)t/2
		$s = \pm 4.9 \times 0.5/2$	A1	
		s = 1.225 m	A1	+ve, 1.22 or 1.23 BoD loss of – sign in final answer

(Questi	on	Answer	Marks	Guidance
2	(iii)		$v^2 = 2g(s \pm 0.539)$	M1	Overall descent, zero initial speed
			$v^2 = 2 \times 9.8 \times (0.539 + 1.225)$	A1ft	ft cv (1.225), tolerate sign change from (ii)
			$v = 5.88 \text{ ms}^{-1}$	A1	Exact, isw rounding of 5.88 to 5.9 if 5.88 seen
			OR	[3]	
			$v^2 = u^2 \pm 2g \times 0.539$	M1 Motion from projection level down, non-zero initial speed	
			$v^2 = 4.9^2 + 2g \times 0.539$	A1ft	ft cv (4.9), tolerate sign change from (i)
			$v = 5.88 \text{ ms}^{-1}$	A1	Exact, isw rounding of 5.88 to 5.9 if 5.88 seen
3	(i)	(a)	$\tan \theta = 8/12$	M1	Must be correct angle.
			$\theta = 33.7^{\circ}$	A1	
				[2]	
			OR correct trig using ans (i)(b)		
			$\sin \theta = 8/cv(14.4) \text{ or } \cos \theta = 12/cv(14.4)$	M1	Must be correct angle
			$\theta = 33.7^{\circ}$	A1	A1 needs 2/2 in (i)(b). $\cos \theta = 12/14.4$ gives $\theta = 33.6$ A1
3	(i)	(b)	$R^2 = 8^2 + 12^2$	M1	Pythagoras, 3 squared terms, R as hypotenuse
			R = 14.4 N	A1	Accept $4\sqrt{13}$ not $\sqrt{208}$
				[2]	
3	(ii)	(a)	$12 \text{CorS}\theta = \pm 8$	M1	Either angle.
			$12\sin\theta = 8$	A1	If other angle is targeted, this A1 requires "90 –". OR
					$12\cos\theta = 8.94, 8.94\tan\theta = 8.$
			$\theta = 41.8^{\circ}$	A1	cao
				[3]	
			OR correct trig using (ii)(b)		
			12CorS θ = cv(8.94), cv(8.94)tan θ = 8, or 8tan θ = cv(8.94)	M1	Either angle
			$12\cos\theta = 8.94 \text{ or } 8.94\tan\theta = 8$	A1	If other angle is targeted, this A1 requires "90 –"
			$\theta = 41.8^{\circ}$	A1	Both A1 marks require 2/2 in (ii)(b)
3	(ii)	(b)	$R = 12\cos 41.8$	M1	Using candidate's angle from 3iia. $OR R^2 = 12^2 - 8^2$, $R^2 + 8^2 = 12^2$
			R = 8.94 N	A1	Accept 8.9 or 8.95, $4\sqrt{5}$, not 9 or 9.0 not $\sqrt{80}$. For A1, the trig
					solution requires 3/3 in (ii)(a)
				[2]	

4728

	Questio	on	Answer	Marks	Guidance	
4	(i)		$v = 18 + 2.4 \times 5$	M1	v = u + at	
			v = 30	A1		
				[2]		
4	(ii)		Distance while accelerating = $(18 + 30) \times 5/2$	B1	Or $30 \times 5 - (30 - 18) \times 5/2$ etc = 120, or $45 + 75$. Numerical.	
			Distance at constant speed = $30(t - 5)$	B1	Tolerate 30t. Algebraic.	
				M1	Adds their areas to get 300	
			$30(t-5) + (18+30) \times 5/2 = 300$	A1	$30T = 300 - 120, \ 30t + 45 + 75 = 300, \ \text{etc}$	
			t = 11	A1		
				[5]		
			OR			
			Distance while accelerating = $(18 + 30) \times 5/2$ (=120)	B1	Or $30 \times 5 - (30 - 18) \times 5/2$ etc = 120, or 45 + 75. Numerical.	
			Distance at constant speed = $300 - cv(120)$	M1	Subtracts their area from 300	
			Time at constant speed = $(300 - cv(120))$	B1	Equivalent to "distance at constant speed algebraic"	
			111111111111111111111111111111111111			
			Time at constant speed = 6	A1		
			t = 11	A1		
			OR			
			Distance = $30t$	B1	Rectangle, comprising 300 + area of "missing triangle"	
			Distance = $(30 - 18) \times 5/2$	B1	"Missing triangle", to be removed	
			$30t - (30 - 18) \times 5/2 = 300$	M1A1	Subtracts their areas to get 300	
			t = 11	A1		
			OR			
			Distance while accelerating = $(18 + 30) \times 5/2$	B1	120	
			Distance at constant speed = $30(t-5)$	B1	May be implied. Tolerate 30t. Algebraic.	
			Distance at constant speed = $300 - 120 = 30(t - 5)$	M1A1	$OR \ 180 = 30t \ M1, \ t = 6 \ A1$	
			t = 11	A1		

4728

(Questi	on	Answer	Marks	Guidance
4	(iii)		$S = 30^2/(2 \times (\pm 6))$	M1	$0^2 = 30^2 \pm 2 \times 6S$, with candidate's v(i)
			<i>S</i> = 75	A1	
			Distance = 375 m	A1ft	300 + cv(75)
				[3]	
			OR	M1	Accept $T = 5$ if no working or from 30/–6, with candidate's $v(i)$
			T = 30/6 and $S = 30T/2$		
			S = 75	A1	
			Distance = 375m	A1ft	300 + cv(75)
5	(i)		$d = 3u + 4 \times 3^{2}/2 \ (= 3u + 18)$	B1	
			$2d = 5u + 4 \times 5^2/2 \ (= 5u + 50)$	B1	$OR d = (5-3)(u+3\times 4) + 4\times 2^2/2$ for lower half of slope
					(d = 2u + 32)
			6u + 36 = 5u + 50	M1	Attempts to solve 2 SE in u and d , at least one with 3 terms.
			14 -1	. 1	Tolerate u, d switch to x, y for solving reasons
			$u = 14 \text{ ms}^2$	Al	
			$2a = 5 \times 14 + 4 \times 5 / 2$	MI	Substitutes in 3 term eqn, starts <i>suvat</i> again, or solves SEs again.
			$OR \ d = 3 \times 14 + 18 \ OR \ d = 2 \times 14 + 32$	A 1	If u is negative, allow substitution of +ve equivalent.
			Length = 120 m	AI	
_	(**)		$A(w) = (w) - \sin \theta$	[0] M1	Mass may be emitted on both sides Allow $A(w) = (w)$
Э	(11)		$4(m) = (m)g\sin\theta$		Mass may be omitted on both sides. Allow $4(m) = (m)g\cos\theta$
			$\theta = 24.1^{\circ}$		
_	(***)		6	[<u>4</u>]	On Conversion 24.1, uses numerical answer referring to (iii)
Э	(111)		$0 = mg\cos 24.1$ m = 0.671 kg		Or $6 = mg \sin 24.1$, uses numerical answer referring to (1)
			m = 0.071 kg		www
6	(;)		$V = \frac{1}{2}(0.06t^3 - 0.45t^2 - 0.24t)/4t$	[4] M1	Differentiates displacement
0	(1)		V = a(0.06i - 0.43i - 0.24i)/di		A sourt with the wasing lifed as officients
			V = 0.18t - 0.9t - 0.24	AI M1	Accept with $+c$, unsimplified coefficients
			$A = d(0.18t^2 - 0.9t - 0.24)/dt$	MI	Differentiates velocity
			A = 0.36t - 0.9	Al	Accept with $+c$, unsimplified coefficients
			$V(0) = -0.24 \text{ m s}^{-1}$	A1	cao, if coeffs in $V(t)$ wrong A0
			$A(0) = -0.9 \text{ m s}^{-2}$	A1 ft	ft cv(-0.9), the constant in expression for A. Tolerate wrong coeff t
		1		[6]	

Question		Answer	Marks	Guidance
6	(ii)	Solves $A = 0$ for t	M1	Not if $A(t)$ includes + <i>c</i> in this section
		0.36t - 0.9 = 0	A1	
		t = 2.5	A1	
		x(2.5) = -2.475	A1	Final answer must be negative. Accept –2.47 and –2.48.
		Speed = $ v(2.5) = 1.365 \text{ m s}^{-1}$	A1	Final answer must be positive. Accept 1.36 or 1.37.
			[5]	
6	(iii)	Uses $v = 0$	M1	
		$0.18t^2 - 0.9t - 0.24 = 0$	A1ft	Forms and offers solution of 3 term QE using $cv(V(i))$
		t = 5.25 s	A1	Must select +ve answer explicitly. Accept 5.3, not 5.2
			[3]	
7	(i)	$0.5g - T = \pm 0.5 \times 1.4$	M1	N2L for Q, difference of 2 force terms
		$0.5g - T = 0.5 \times 1.4$	A1	
		T = 4.2 N	A1	
			[3]	
7	(ii)	$4.2 - F - 0.6g\sin 30 = 0.6 \times 1.4 \ OR$	M1	N2L for <i>P</i> , 3 forces including a component of weight of <i>P</i> and
		$4.2 - \mu R - 0.6g \sin 30 = 0.6 \times 1.4$		cv(4.2)
		Friction (= $4.2 - 0.6g\sin 30 - 0.6 \times 1.4$) = 0.42	A1	May be implied
		Reaction $= 0.6 g cos 30$	B1	May be implied
		$0.42 = 0.6 g \cos 30 \mu \ OR \ \mu = 0.42 / \ 0.6 g \cos 30$	M1	$F = \mu R$, R a component of weight of P and F has been found using
		0.0005	1	a component of the weight of P. Tolerate F –ve and $ -veF $.
		$\mu = 0.0825$	Al	Accept 0.082, not 0.083.
-	()		[5]	
1	(m)	$R = (0.6g + 7) \cos 30$	MI	Includes weight cmpts of P and B, allow $/g$
		K = 11.2		11.154 May be implied $W_{i} = V_{i} = V_{i}$
		Fr = /sin30 - 0.42	M1*	wt cmpt B (allow $/g)$ – Fr(11) must be difference.
		Fr = 3.08	A1	May be implied.
		$\mu = 3.08/11.2$	D*M1	Both quantities +ve, F and R both from 2 term equations
		$\mu = 0.276$	A1	Value of μ , accept 0.28, disregard inequality sign
		$\mu \ge 0.276$	B1 ft	ft cv (μ found in (iii)) direction of greater than or equal to sign; isw
				any work relating to an upper limit for μ
			[7]	

Question		n	Answer	Marks	Guidance		
1	(i)		$v^2 = 3.5^2 + 2g \times 5$	M1	Uses $v^2 = 3.5^2 + 2g5$	Accept -3.5^{2} for $(-3.5)^{2}$ etc	
			$v = 10.5 \text{ ms}^{-1}$	A1			
				[2]			
	(ii)			M1	$+/-5 = 0.87u +/-g 0.87^{2}/2$	May come from $s = vt - gt^2/2$	
			$5 = 0.87u - g \times 0.87^2 / 2$	A1			
			$u = 10.0 \text{ m s}^{-1}$	A1			
				[3]			
	(iii)		Change = $0.2 \times 10.5 + 0.2 \times 10$	M1	Or +/- 0.2(Ans(i) +/- Ans(ii))		
			Change = $4.1(0)$ kg m s ⁻¹	A1	It is OK get -4.1 from correct work		
				[2]			
2	(i)		$2.5\sin\theta = 2.4$	M1	$2.5 \text{CorS}\theta = 2.4$	$2.5\cos\theta = 2.4$ M1 hence	
			$\theta = 73.7$	A1	Accept 74	$\theta = 16.3 \text{ A0}$	
			$2.5\cos\theta = F$	M1	$F = 2.5 \operatorname{SorC}\theta$, opposite to that above	$2.5\sin\theta = F$ M1 hence	
			F = 0.7	A1	Exact, but allow 0.702 (3 sf) $\theta = 73.7$	<i>F</i> =0.7(00) A1 SC	
			OR	[4]			
			$2.4^2 + F^2 = 2.5^2 \text{ or } F^2 = 2.5^2 - 2.4^2$	M1			
			F = 0.7	A1		F can then be used to find θ	
	(ii)		2.4 = 0.2a	M1	N2L, Any horizontal force other than F , 0.7,	Including g, automatically M0	
					2.5 (Do not treat removing/using 2.5 as a		
					MR)		
	$a = 12 \text{ ms}^{-2}$		$a = 12 \text{ ms}^{-2}$	A1	12.0 from 2.5sin73.7 /0.2		
			Bearing (0)90° OR			Horizontal is B0 (ambiguous)	
			"To right"," opposite old 2.4 N force" etc	B1	Angle value other than exactly 90° or 0° B0		
				[3]	Allow B1 for force dirn, if accn not found		

Question		Answer	Marks	Guidance		
3	(i)	3 ms^{-1}	B1		MR $(0.6t^3 + 3)$, award B1 here	
			[1]			
	(ii)	$x = \int (0.6t^2 + 3) \mathrm{d}t$	M1*	Integrates v	MR $(0.6t^3 + 3)$	
		$x = 0.6t^3/3 + 3t (+c)$	A1	Accept with/without + c	$0.6t^4/4+3t$ is A0	
		Substitutes 1.5 in expression for x	D*M1	Needs integration and 2 terms in t		
		x(1.5) = 5.175 m	A1	Only without +c. Accept 5.17, 5.18	MR 5.26 only gets A1ft	
			[4]			
	(iii)	$a = \mathrm{d}(0.6t^2 + 3)/\mathrm{d}t$	M1*	Differentiates v	MR $(0.6t^3 + 3)$ gives t=1.82(57)	
		$6 = 2 \times 0.6t$	D*M1	Plus attempt to solve $a(t) = 6$		
		$v(5) = 18 \text{ ms}^{-1}$	A1		v(1.8257) = 6.65 (3 sf)	
			[3]			
4	(i)	Calculation for both "before" Momentum (magnitudes)	M1	Must not include g		
		Compares both terms without arithmetic error	A1*			
		Shows direction of after total momentum conflicts with the before velocity/momentum of Q	D*A1	Vector nature of momentum by word or sign (+/-)	Explicit reference to after momentum or conservation of momentum essential.	
			[3]			
	(ii)	$TMB = +/-(0.2 \times 4 + 0.3 \times (-2))$	B1	Accept inclusion of g		
		0.8 - 0.6 = 0.2v + 0.3v	M1	Allow if g included in all terms	LHS must be difference for both M1 marks	
		$v = 0.4 \text{ m s}^{-1}$	A1	Not awarded if g included		
		0.8 - 0.6 = -0.2v + 0.3v	M1	Allow if g included in all terms	SC 0.8 - 0.6 = 0.2v - 0.3v M1	
		$v = 2 \text{ m s}^{-1}$	A1	Not awarded if g included	Speed = 2 and the direction of motion of Q is reversed $A1$	
			[5]			

Question		n	Answer	Marks	Guidance	
5	(i)		$5/(T-3) = -4 \ OR \ 5/(3-T) = 4$	M1	Accept verification, $4 \times (3 - 1.75)$ M1	
			T = 1.75	A1	= 5 A1 <i>OR</i> 5/(3-1.75) M1 = 4 A1	
				[2]		
	(ii)	(a)	-4 ms^{-1}	B1		
				[1]		
		(b)	4 ms^{-1}	B1		
				[1]		
		(c)	4 ms^{-1}	B1		
				[1]		
	(iii)		$2 \times (-)4, 2 \times 4, (1 \times)4$	M1*	Calculates any one unknown distance	Allow if only one calc. correct
			d = (-)5 + (-)8 + 8 + 4	D*M1	Adds 5 and "3 other" distances or -5 and "3 other" displacements	Note t=5 to t=9, t=5 to t=10 etc, may be one term
			d = 25 m	A1	Correctly comes from $4x(1.25+4+1)$ 3/3	
				[3]		
	(iv)		$v = d(20t - t^2 - 96)/dt$	M1*	Differentiates x, accept $20 - t$ as	
			v = 20 - 2t	A1	"differentiation"	
			20 - 2t = -4	D*M1	20 - 2t + c = -4 is DM0	
			t = 12 (ignore any solutions less than 10)	A1	Only from $20-2t = -4$. This answer can arise fortuitously from solving $20t - t^2 - 96=0$.	SC Verifying that t=12 gives v= -4 can gain final M1A1 (A special case of
				[4]		trial and refinement)

Question		n	Answer	Marks	Guidance	
6	(i)		$3 = 8\mu$	M1	Uses $F = \mu R$, Allow R is 8 or 8g, $Fr = 3$ only	
			$\mu = 0.375$	A1	$3/8$ (fraction), not $3\div 8$ (division)	
				[2]		
	(ii)		$C^2 = 3^2 + 8^2$	M1	Uses Pythagoras with 3 and 8 or 8g	
			C = 8.54 N	A1	Accept 8.5 or $\sqrt{73}$	
			$\tan\theta = 3/8 \text{ or } \tan\theta = 8/3$	M1	Uses tan with 3 and 8 or 8g	Or CorS with answer for C
			$\theta = 20.6^{\circ}$ with vertical or 69.4° with	A1	Accept 21 or 69, direction clear by words or	isw work after correct angle magnitude
			horizontal		diagram.	found
				[4]		
	(iii)	(a)	$T(\cos 0) - 3 = +/-3$	M1	$T(\cos 0) - 3 = 0$ is M0	$T\cos 0 -3 = -3$ assumes Fr direction has
			T = 6	A1	Answer alone is sufficient for M1A1	not changed
				[2]		
	(iii)	(b)	$R = +/-(8 - T \times \text{SorC30})$	M1	Accept 8g with cmpt T	(This is required also in the SC case)
			$R = 8 - T \sin 30$	A1	oe	
			$Fr = +/-(T \times \text{CorS30} - 3)$	M1	Accept 3 with cmpt <i>T</i> , not $T \times \text{CorS30} + /-3 = 0$	SC Does not allow for change in
						direction of Friction
			$Fr = T\cos 30 - 3$	A1	oe	$Fr = 3 - T\cos 30$ A1
			$0.375 = (T\cos 30 - 3) / (8 - T\sin 30)$	M1	Accept use of μ from (i). For forming an	$0.375 = (3 - T\cos 30) / (8 - T\sin 30)$ M1
					equation in T alone.	
			T = 5.70	A1		T = 0 A0
			<i>OR</i> Alternative for last 4 marks	[6]		SC (Alternative)
			$Fr = 0.375(8 - T\sin 30)$	-	Accept use of μ from (i).	$Fr = 0.375(8 - T\sin 30)$
			$Fr = +/-(T \times \text{CorS}30 - 3)$	MI		$Fr = +/-(T \times \text{CorS30} - 3) \qquad \text{M1}$
			$Fr = 1\cos 30 - 3$ 0.275(8 Trin 20) - Troo 20 2	AI M1	For forming an equation in T alone	$Fr = 3-T\cos 30$ A1
			$0.3/5(8 - I\sin 30) = I\cos 30 - 3$ T - 5.70		i or forming an equation in T atone.	$(0.3/5(8-T\sin 30) = (3-T\cos 30)$ M1
	1		1 - J.10	111		I = 0 A0

Question		n Answer	Marks	Guidance	
7	(i)	$s = 0.6 \times 2 + 0.9 \times 2^2 / 2$	M1	Uses $s = ut + at^2/2$, $u \neq 0$, $a \neq g$ or gCorS30	
		<i>s</i> = 3	A1		
		AB = 6 m	A1		
			[3]		
	(ii)	$V_M = 0.6 + 0.9 \times 2 \ OR$		2.4	Award if found in (i) and used in (ii)
		$V_M^2 = 0.6^2 + 2x0.9 \times 3$	B1	5.76	
		$a = g \sin 30$	B1	4.9	
		$V_B^2 = 2.4^2 + 2(9.8\sin 30) \times 3$	M1	Uses $v^2 = u^2 + 2as$, $u \neq 0$ or 0.6, $a \neq g$ or 0.9, $s \neq AB(i)$	If $AB(i) = 3$, allow its use for final M1A1
		$V_B = 5.93 \text{ ms}^{-1}$	A1	Accept 5.9	
			[4]		
	(iii)		M1	N2L, $0.3 \times 0.9 = +/-(0.3 \text{gCorS} 30 - T)$	a = 0.9 essential, $m = 0.3$ but if 0.4
		$0.3 \times 0.9 = 0.3 gsin 30 - T$	A1		used in (iii) AND 0.3 used in (iv), treat as a single mis-read
		T = 1.2 N	A1		
			[3]		
	(iv)		M1*	N2L, 3 forces inc +/-($0.4gCorS30 + T$)	a = 0.9 or value used in (iii), $m=0.4$
		$0.4 \times 0.9 = 0.4g\sin 30 + 1.2 - Fr$	A1ft	ft $cv(T)$ in (iii)	but if 0.4 used in (iii) AND 0.3 used in (iv), treat as a single mis-read
		<i>Fr</i> = 2.8	A1	May be shown by mu calculation	
1		$R = 0.4 g \cos 30$	B1	May be implied, 3.39(48)	
1		$\mu = 2.8/3.39$	D*M1	$2.8 = 3.39(48) \mu$, both forces positive	Awarded only if M1 forN2L equation
1		$\mu = 0.825$	A1	Accept 0.82, not 0.83 or 0.826	
			[6]		