OCR Maths M1

Mark Scheme Pack

2005-2014

2	(i)	$\begin{aligned} & 0.2 g+T-0.4=0.2 a \\ & 0.3 g-T-0.25=0.3 a \end{aligned}$	M1 A1 A1 A1 4	For applying $F=m a$ (requires at least $m a, T$ and air resistance in linear combination in at least one equation). At least one equation with not more than one error. SR $0.2 g-T-0.4=0.2 a$ and $0.3 g+T-0.25=0.3 a$ B1
	(ii)	$\begin{aligned} & 0.5 g-0.65=0.5 a \text { or } 5 T-0.7=0 \\ & \begin{array}{l} a=8.5 \text { and } T=0.14 \text { (positive } \\ \text { only) } \end{array} \end{aligned}$	M1 A1 ft A1	For obtaining an equation in T or a only, either by eliminating a or T from the equations in (i) or by applying $F=m a$ to the complete system For a correct equation in a only or T only ft opposite direction of T only

3	(i)	$\begin{array}{\|l} \hline \text { Momentum before }=0.1 \times 4- \\ 0.2 \times 3 \\ \text { Momentum after }= \\ \quad \quad-0.1 u+0.2(3.5-u) \\ 0.1 \times 4-0.2 \times 3= \\ \quad-0.1 u+0.2(3.5-u) \\ u=3 \quad \text { (positive value only) } \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	or Loss by $P=0.1 \times 4+0.1 u$ or Gain by $Q=0.2(3.5-u)+0.2 \times 3$ For using the principle of conservation of momentum
					SR If mgv used for momentum instead of mv , then $u=3$ B1
	(ii)	$\begin{array}{\|l} 0=3^{2}-10 s_{1} \text { and } 0=0.5^{2}-10 s_{2} \\ 0.9+0.025 \\ \text { Distance is } 0.925 \mathrm{~m} \quad \text { cao } \end{array}$	Mī A1 ft M1 A1		For using $v^{2}=u^{2}+2$ as with v $=0$ (either case) or equivalent equations ft value of u from (i) For using $P Q=s_{1}+s_{2}$

4	(i) α	$\begin{aligned} & 2=0.8 u+1 / 2 a(0.8)^{2} \\ & 8=2 u+1 / 2 a 2^{2} \quad \text { or } \\ & 6=1.2(\mathrm{u}+0.8 \mathrm{a})+1 / 2 a(1.2)^{2} \text { or } \\ & 6=1.2(2 \times 2 \div 0.8-u)+1 / 2 a(1.2)^{2} \\ & u=1.5 \end{aligned}$ Acceleration is $2.5 \mathrm{~ms}^{-2}$	M1 A1 M1 A1 M1 A1 A1 7 	For using $s=u t+1 / 2 a t^{2}$ for the first stage For obtaining another equation in u and a with relevant values of velocity, displacement and time For eliminating a or u
	(i) β	$\begin{aligned} & 2=0.8 v-1 / 2 a(0.8)^{2} \\ & 6=1.2 v+1 / 2 a(1.2)^{2} \end{aligned}$ Acceleration is $2.5 \mathrm{~ms}^{-2} \quad(v=$ 3.5) $u=1.5$	M1 A1 M1 A1 M1 A1 A1 7	For using $s=v t-1 / 2 a t$ for the first stage For using $s=u t+1 / 2 a t^{2}$ for the second stage For obtaining values of a and v and using $v=u+a t$ for first stage to find u
	(i) γ	$\begin{aligned} & 2 \div 0.8 \mathrm{~ms}^{\text {and }} 6 \div 1.2 \mathrm{~ms}^{-1} \\ & =2.5 \mathrm{~ms}^{-1} \text { and } 5 \mathrm{~ms}^{-1} \\ & t_{1}=0.4 \text { and } t_{2}=(0.8+) 0.6 \\ & 5=2.5+a(1.4-0.4) \end{aligned}$ Acceleration is $2.5 \mathrm{~ms}^{-2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	For finding average speeds in both intervals For finding mid-interval times For using $v=u+a t$ between the mid-interval times

	$\begin{aligned} & 2.5=u+2.5 \times 0.4 \text { or } \\ & 5=u+2.5 \times 1.4 \\ & u=1.5 \end{aligned}$	M1 A1	7	For using $v=u+a t$ between $t=0$ and one of the midinterval times
(ii)	$\begin{aligned} & 2.5=9.8 \sin \alpha \\ & \alpha=14.8^{\circ} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1ft } \end{array}$	2	For using $(m) a=(m) g \sin \alpha$ ft value of acceleration

5	(i)	$\begin{aligned} & F=2+7 \cos \alpha \\ & F=3.96 \text { (may be implied) } \\ & N=7 \sin \alpha \\ & \\ & N=6.72 \text { (may be implied) } \\ & 3.96=\mu 6.72 \\ & \text { Coefficient is } 0.589 \text { or } 33 / 56 \text { cao } \end{aligned}$	M1 A1 A1 M1 A1 M1 A1 7	For resolving forces on A vertically (3 terms) For resolving forces on A horizontally (2 terms) For using $F=\mu N$
	(ii)	$\begin{aligned} & T \cos \beta=7 \cos \alpha \\ & T \cos \beta=7 \times 0.28 \quad(=1.96 \quad \text { AG }) \end{aligned}$	$\begin{array}{ll} \mathrm{M} 1 \\ \mathrm{~A} 1 & 2 \end{array}$	For resolving forces at P vertically (2 terms)
	(iii)	$\begin{aligned} & T \cos \beta-m g=0 \\ & \text { Mass is } 0.2 \mathrm{~kg} \end{aligned}$	A1 $\text { A1 } 3$	For resolving forces on B vertically (2 terms)

6	(i)(a)	$\begin{aligned} & V=P \cos 20^{\circ}-0.04 g \\ & P=0.417 \end{aligned}$	$\begin{array}{ll} \text { B1 } \\ \text { M1 } & \\ \text { A1 } & 3 \\ \hline \end{array}$	For setting $V=0$
	(i)(b)	$R=P \sin 20^{\circ}$ Magnitude is 0.143 N	M1 A1ft 2	For using $R=$ horizontal component of P ft value of P
	(i)(c)	$\begin{aligned} & 0.143=0.04 a \\ & \text { Acceleration is } 3.57 \mathrm{~ms}^{-2} \end{aligned}$	M1 A1ft 2	For using Newton's second law ft magnitude of the resultant
	(ii)	$R^{2}=0.08^{2}+(0.04 \mathrm{~g})^{2}$ Magnitude is 0.400 N (or 0.40 or 0.4) $\tan \theta=+/-0.04 g / 0.08$ or $\tan \left(90^{\circ}-\theta\right)=+/-0.08 / 0.04 \mathrm{~g}$ Angle made with horizontal is 78.5° or 1.37 radians, or angle made with vertical is 11.5° or 0.201 radians Downwards or below horizontal	M1 A1 M1 A1 B1 5	For using $R^{2}=P^{2}+W^{2}$ For using $\tan \theta=Y / X$ or $\tan \left(90^{\circ}-\theta\right)=X / Y$ Direction may alternatively be shown clearly on a diagram or given as a bearing

7	(i)	$\begin{aligned} & 1 / 2200 \times 16+300 \times 1 / 2(16+25) \\ & + \\ & 1 / 2100 \times 25(=1600+6150+ \\ & 1250) \end{aligned}$ Distance is 9000 m	$\begin{array}{ll} \hline \text { M1 } & \\ & \\ \text { A1 } & \\ \text { A1 } & 3 \end{array}$	For using the idea that the area of the quadrilateral represents distance
	(ii)	$a=(0-25) /(600-500)$ Deceleration is $0.25 \mathrm{~ms}^{-2}$	A1 2	For using the idea that gradient (= vel \div time) represents acceleration Or for using $v=u+a t$ Allow acceleration $=-0.25 \mathrm{~ms}^{-2}$
	(iii)	Acceleration is ($\left.1200 t-3 t^{2}\right) \times 10^{-6}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	For using $a(t)=\dot{v}(t)$
	(iv)	$\begin{aligned} & 0.25-0.2475 \\ & \text { Amount is }+/-0.0025 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1ft } \end{aligned}$	For using 'ans(ii)- - $\left.a_{\mathrm{Q}}(550)\right\|^{\prime}$ ft ans(ii) only
	(v)	$1200 t-3 t^{2}=0$ $t=(0 \text { or }) 400$ AG	M1 $\text { A1 } \quad 2$	For solving $a_{\mathrm{Q}}(t)=0$ or for finding $a_{\mathrm{Q}}(400)$ Or for obtaining $a_{\mathrm{Q}}(400)=0$
	(vi)	$\begin{aligned} & 1 / 2200 \times 16+200 \times 1 / 2(16+22) \\ & s_{\mathrm{Q}}(t)=\left(200 t^{3}-t^{4} / 4\right) \times 10^{-6}(+C) \\ & 6400-5400 \end{aligned}$ Distance is 1000 m	M1 A1 M1 A1 M1 A1 6	For correct method for $s_{\mathrm{P}}(400)$ For using $s_{\mathrm{Q}}(t)=\int v_{Q} d t$ For using correct limits and finding $\left\|s_{\mathrm{Q}}(400)-s_{\mathrm{P}}(400)\right\|$

\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 \& (i)

(ii)

(i)

(ii) \& | $0.3 \mathrm{~g}-T=0.3 \mathrm{a}$ and $\mathrm{T}-0.4 \mathrm{~g}=0.4 \mathrm{a}$ $\begin{aligned} & -0.1 \mathrm{~g}=0.7 \mathrm{a} \\ & \mathrm{a}=-1.4 \end{aligned}$ |
| :--- |
| See appendix for substituting $\begin{aligned} & \underline{a}=-1.4 \\ & 0=2.8 \mathrm{t}-1 / 21.4 \mathrm{t}^{2} \\ & 0=\mathrm{t}(2.8-0.7 \mathrm{t}) \end{aligned}$ |
| Time taken is 4 s |
| OR $(0.3+0.4) a=(0.3-0.4) g$ $\begin{aligned} & \mathrm{a}=-1.4 \\ & 0=2.8+-1.4 \mathrm{t} \\ & \mathrm{t}=2.8 / 1.4 \end{aligned}$ |
| Time taken is 4 s | \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M2 } \\
& \text { A1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& [4]

[3]

$[4]$

$[3]$ \& | For using Newton’s second law (either particle) condone 0.3ga,0.4ga and !(LHS) |
| :--- |
| Both correct. SR Accept $T-0.3 g=$ 0.3 a etc as correct only if consistent with a shown as upwards for P on c's diagram |
| Eliminating T |
| AG |
| For using $s=u t+1 / 2$ at 2 with $s=0$ |
| Solving QE |
| From correct equation only |
| For using $\left(m_{1}+m_{2}\right) a=\left(m_{1}-m_{2}\right) g$ No application of $S R$ shown above AG |
| For using $\mathrm{v}=\mathrm{u}+$ at with $\mathrm{v}=0$ |
| Solve for t, and double or any other complete method for return time |

\hline
\end{tabular}

2	(i) (ii)	$\begin{aligned} & \text { Tsin } \alpha=0.08 \times 1.25 \\ & \quad=0.1 \\ & \mathrm{~T} \cos \alpha=0.08 \mathrm{~g} \\ & \\ & \\ & \mathrm{~T}^{2}=0.1^{2}+0.784^{2} \text { or } \alpha= \\ & 7.3^{\circ} \\ & \mathrm{T}=0.79 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	[2]	Newton's second law condone cos, and 0.08 g for mass but not part of force Resolving forces vertically, condone sin May be implied by $\mathrm{T}^{2}=0.1^{2}+0.784^{2}$ For eliminating α or T $\alpha=7.3^{\circ}$ or better Accept anything rounding to 0.79

3	(i)	$a=7.2-0.9 t$ $T=8$ See also special case in appendix.	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]	For using $a=\mathrm{d} v / \mathrm{d} t$ For attempting to solve $a(t)=0$
	(ii)	$v(T)=28.8$ See also special case in appendix.	B1	[1]	AG (From $7.2 \times 8-0.45 \times 8^{2}$)
	(iii)	$\begin{aligned} & s=3.6 t^{2}-0.15 t^{3} \quad(+C) \\ & s=153.6(+C) \\ & \text { sat constant speed }=662.4 \\ & \text { Displacement is } 816 \mathrm{~m} \end{aligned}$	M1 A1 DM1 A1 B1ft A1ft	[6]	For using $s=\int v d t$ For finding $s(T$ or 31) or using limits (0) to T or (0) to 31 (dep on integration) Condone $+C$ For using ($31-\mathrm{cv} T) \times 28.8$ cv 153.6 + cv 662.4 (non-zero numerical)

4	(i)	$F=12 \cos 15^{\circ}$ Frictional component is 11.6 N	$\begin{align*} & \text { M1 } \\ & \text { A1 } \tag{2} \end{align*}$	Resolve horizontally (condone sin) Accept 12cos 15°
	(ii)	$N+12 \sin 15^{\circ}=2 g$ Normal component is 16.5 N	M1 A1 [2]	Resolve vert 3 forces (accept cos) AG
	(iii)	$11.591 \ldots=\mu 16.494 \ldots$ Coefficient is 0.7(0)	M1 A1ft [2]	For using cv $F=\mu \mathrm{cv} N$ Ft cv F to 2 sf. $\mu=0.7027 \ldots$....
	(iv)	$\begin{aligned} & N=2 g \\ & F=19.6 \times 0.7027 \ldots \\ & 20-13.773 \ldots=2 a \end{aligned}$ Acceleration is $3.11 \mathrm{~ms}^{-2}$ MISREAD (omits "horizontal") $\begin{aligned} & N=2 g-20 \sin 15 \\ & F=0.7027 \times 14.4 \end{aligned}$ $20 \cos 15-10.14=2 a$ Acceleration is $4.59 \mathrm{~ms}^{-2}$	B1 M1 M1 A1ft A1 [5] MR-1 B1ft M1 M1 A1ft A1ft [4]	For using Newton's second law cv Tractive - cv Friction (e.g. from (i)) Accept either 3.11 or 3.12 only All A and B marks now ft. Subtract "MR-1" from initial B1 or final A1 (not A1ft in main scheme). Equals 14.42... Equals 10.1.... For using Newton's second law cv Tractive - cv Friction Accept 4.59, 4.6(0)

5	(i)		Graph with 5 straight line segments and with v single valued. Line segment for car stage Line segment for walk stage Line segment for wait stage 2 line segments for motor-cycle stage	B1 B1 B1 B1 B1 [5]	'Wait' line segment may not be distinguishable from part of the t axis. Attempt at all lines segments fully straight. Mainly straight, ends on t-axis Horizontal below t-axis. Ignore linking to axis. Can be implied by gap between walk and motor-cycle stages Inverted V not U, mainly straight. Condone vertex below x intercept.
	(ii)	$d=12 / 8$ Deceleration is $1.5 \mathrm{~ms}^{-2}$		$\begin{array}{ll} \text { M1 } \\ \text { A1 } \end{array}$	Using gradient represents accn Or a $=-1.5 \mathrm{~ms}^{-2}$
	(iii)	$\begin{aligned} & t_{\text {walk }}=420 / 0.7 \\ & t_{\text {motorcycle }}=42 \\ & T=8+600+250+42=900 \end{aligned}$		$\begin{array}{\|ll} \text { M1 } & \\ & \\ \text { B1 } & \\ \text { B1 } & \\ \text { A1 } & {[4]} \end{array}$	Using area represents displacement. Accept 600 Ignore method

6	(i)	$\begin{aligned} & T_{\mathrm{A}} \cos \alpha-T_{\mathrm{B}} \cos \beta=W \\ & T_{\mathrm{A}}=T_{\mathrm{B}}(=T) \\ & \cos \alpha>\cos \beta \rightarrow \alpha<\beta \end{aligned}$	M1 B1 A1	For resolving 3 forces vertically, condone Wg , sin May be implied or shown in diagram AG
	(ii)(a)	$T \sin \alpha+T \sin \beta=14$ $\sin \alpha=0.6$ and $\sin \beta=0.8$ Tension is 10 N	M1 DM1 A1 [3]	Resolve 3 forces horiz accept cOS
	(ii)(b)	$\begin{aligned} & 10 \cos \alpha-10 \cos \beta=W \\ & \alpha=36.9^{\circ}, \beta=53.1^{\circ} \end{aligned}$ $W=2$ See appendix for solution based on resolving along $R A$ and $R B$.	M1 DM1 A1 ft [3]	Must use cv T, and W (not $W g$) Or $\cos \alpha=0.8$ and $\cos \beta=0.6$ SR -1 for assuming $\alpha+\beta=90^{\circ}$ ft for $T / 5$ (accept 1.99)
	(iii)	R is below B Tension is 1 N	B1 $\mathrm{B} 1 \mathrm{ft} \quad$ [2]	Accept R more than 0.5 m below A ft for $W / 2$ accept $W / 2$

7	(i)	Initial momentum $=0.15 \times 8+$ 0.5×2 Final momentum $=0.5 v$ $0.15 \times 8+0.5 \times 2=0.5 v$ (or $0.15 \times 8=0.5 \times(v-2))$ $v=4.4$ $(m) g \sin \alpha=(\pm)(m) a$ $a=(\pm) 4.9$ EITHER (see also part (ii)) $0=4.4^{2}-2 \times 4.9 s$ $\mathrm{s}=1.97$ or 1.98 m OR $\begin{aligned} & v^{2}=4.4^{2}-2 \times 4.9 \times 2 \\ & v^{2}=-0.24 \end{aligned}$ OR (see also part (ii)) $t=4.4 / 4.9$ ($=0.898$) with either $s=4.4 \times 0.898-0.5 \times 4.9 \times$ 0.898^{2} or $s=(4.4+0) / 2 \times$ 0.898 $\mathrm{s}=1.97$ or 1.98 m	B1 B1 M1 A1 M1 A1 M1 A1ft M1 A1ft M1 A1ft	[4]	(or loss in A's momentum $=$ 0.15×8 B1 and gain in B 's momentum $=$ $0.5(v-2)$ B1) For using the principle of conservation of momentum condone inclusion of g in all terms $\boldsymbol{S R}$ Awarded even if g in all terms Condone cos For using $v^{2}=u^{2}+2 a s$ with $v=$ 0 Accept $s<2$ iff $s=4.4^{2} /($ 2×4.9) For using $v^{2}=u^{2}+2 a s$ with $s=$ 2 Accept $v^{2}<0$ Both parts of method needed Accept $s<2$
	(ii)	$\begin{aligned} & 2=1 / 24.9 t_{\mathrm{A}}{ }^{2} \\ & t_{\mathrm{A}}=0.904 \end{aligned}$ EITHER $\begin{aligned} & 2=(-4.4) t_{\mathrm{B}}+1 / 24.9 t_{\mathrm{B}}^{2} \\ & t_{\mathrm{B}}=\left(4 . 4 ! \oplus \left(4.4^{2}\right.\right. \\ & +4 \times 2.45 \times 2)) / 4.9 \\ & t_{\mathrm{B}}=2.17 \end{aligned}$ $t_{\mathrm{B}}-t_{\mathrm{A}}=(2.17-0.9)=1.27 \mathrm{~s}$ OR $\begin{aligned} & t_{\mathrm{up}}=4.4 / 4.9(=0.898) \\ & (2+1.98)=0.5 \times 4.9 \times t_{\text {down }}{ }^{2} \\ & t_{\text {down }}=1.27 \\ & t_{\mathrm{B}}-t_{\mathrm{A}}=(0.9+1.27-0.9)=1.27 \mathrm{~s} \end{aligned}$ OR $0=4.4 t-1 / 24.9 t^{2}$ (i.e. approx 1.8 s to return to start) $\begin{aligned} & 2=4.4 t+4.9 t^{2} \\ & t=0.376 \\ & t_{\mathrm{B}} \mathrm{t}_{\mathrm{A}}=1.796+0.376-0.9= \\ & 1.27 \mathrm{~s} \end{aligned}$	M1 A1 M1 M1 A1 A1 M1 M1 A1 A1 M1 M1 A1 A1		cv for acceleration Accept $0.903=<$ time $=<0.904$ Appropriate use of $s=u t+1 / 2$ $a t^{2}$ Correct method for solving QE 2.171... Or using $s_{\text {up }}$ to find $t_{\text {up }}$ $s=u t+1 / 2 a t^{2}$ with cv s in part (i) Not the final answer $s=u t+1 / 2 a t^{2} \text { with } s=0=1.796$

$\left.\begin{array}{|l|l|l|l|l|}\hline 1 & & \begin{array}{l}\text { Momentum before }=3 M- \\ 1200 \times 3 \\ \text { Momentum after }=1200 \times 5\end{array} & \text { B1 } & \text { B1 } \\ & \begin{array}{ll}3 M-3600=6000 \\ 3(1200+m)-3600=6000 \\ m=2000\end{array} & \begin{array}{l}\text { Ignore g if included; accept } \\ \text { inconsistent directions }\end{array} \\ \hdashline \text { (or loss of momentum of } \\ \text { loaded wagon }=3 M \\ \text { B1 } \\ \text { gain of momentum of } \\ \text { unloaded wagon }=1200(5+3) \\ \text { B1) }\end{array}\right]$

3	(i)	 Time intervals 80, 40, 40 $t=80,120,160$	B1 B1 B1 B1 B1	Line segment $A B$ (say) of +ve slope from origin Line segment $B C$ (say) of steeper + ve slope and shorter time interval than those for $A B$. $\mathbf{S R}$: If the straight line segments are joined by curves, this B1 mark is not awarded Line segment CD (say) of less steep slope compared with $B C$. (An (x, t) graph is accepted and the references to more/less steep are reversed.) May be implied; any 2 correct
	(ii)	Line joining (0,0) and (160, 360)	B1 ft 6	
	(iii)	$\begin{align*} & v=360 / 160 \\ & s=120+4.5(t-80) \\ & 2.25 t \\ & t=106 \frac{2}{3} \quad(107) \tag{107} \end{align*}$ SR Construction method Plotting points on graph paper t between 104 and 109 inclusive	M1 M1 A1 M1 A1 5 M1 A1	Woman's velocity ($=2.25$) For equation of man's displacement in relevant interval Accept omission of -80 Woman's displacement, awarded even if t is interpreted differently in man's expression Accept also 106.6, 106.7 but not 106 Candidates reading the displacement intersection from graph, then dividing this distance by the woman's speed to find t, also get $v=360 / 160$ M1 as above for the woman's velocity.
4	(i)	Displacement is 20 m	B1 . . 1	$20+\mathrm{C}$ (from integration) B0
	(ii)	$s(t)=0.01 t^{3}-0.15 t^{2}+2 t$ (+A) $10-15+20+A=20$ Displacement is $0.01 t^{3}-0.15 t^{2}+2 t+5$	M1 A1 M1 A1 4	For using $s(t)=\int v(t) d t$ Can be awarded prior to cancelling For using $s(10)=c v(20)$ AG
	(iii)	$\begin{aligned} & a=0.06 t-0.3 \\ & 0.06 t-0.3=0.6 \\ & t=15 \\ & \text { Displacement is } 35 \mathrm{~m} \\ & \hline \end{aligned}$	M1 A1 DM1 A1 B1 5	For using $a(t)=d v / d t$ For starting solving $a(t)=0.6$ depends on previous M1

\begin{tabular}{|c|c|c|c|c|}
\hline 5 \& (i) \& \[
\begin{aligned}
\& R=m g \\
\& m=2.55
\end{aligned}
\] \& \begin{tabular}{|ll|}
\hline M1 \& \\
M1 \& \\
A1 \& 3 \\
\hline
\end{tabular} \& For using \(F=5\) and \(F=\mu R\) Accept 2.5 or 2.6 \\
\hline \& (ii) a

(ii) \mathbf{b} \& \[
$$
\begin{aligned}
& P \cos \alpha=6 \\
& R=P \sin \alpha+25 \\
& 0.2 R=6 \\
& \\
& 0.2(P \sin \alpha+25)=6 \\
& \\
& \alpha=39.8^{\circ} \\
& P^{2}=6^{2}+5^{2} \\
& \text { or } P \cos 39.8^{\circ}=6 \\
& \text { or } P \sin 39.8^{\circ}=5 \\
& P=7.81 \\
& P
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| A1ft |
| B1 |
| M1 |
| A1 |
| M1 |
| A1 8 | \& | For resolving vertically with 3 distinct forces |
| :--- |
| Or $P \sin \alpha+(\mathrm{cv} \mathrm{m}) g$ |
| For using $F=6$ and $F=\mu R$. |
| Can be implied by |
| $0.2(P \sin \alpha+25)=6$ |
| For an equation in |
| $P \sin \alpha(=5)$ after elimination of R |
| Accept art 40° |
| For eliminating or substituting for α with $\operatorname{cv}(6)$. Evidence is needed that 5 is the value of $P \sin \alpha$ (rather than the original frictional force) |
| Accept art 7.8 |

\hline 6 \& (i) \& | $10500+3000+1500$ |
| :--- |
| Driving force below 15000 gives retardation | \& \[

$$
\begin{array}{|l|}
\hline \text { M1 } \\
\text { A1 }
\end{array}
$$
\]

$$
\text { . } 2
$$ \& For summing 3 resistances Accept generalised case or specific instance

\hline \& (ii) \& | $35000-15000=80000 a$ |
| :--- |
| Acceleration is $0.25 \mathrm{~ms}^{-2}$ | \& \& Newton's second law for whole train AG Accept verification

\hline \& (iii) \& \[
$$
\begin{aligned}
& 35000-10500-8500= \\
& 0.25 \mathrm{~m} \\
& \text { Mass is } 64000 \mathrm{~kg}
\end{aligned}
$$

\] \& | A1 |
| :--- |
| A1 3 | \& For applying Newton's second law to E only, at least 2 forces out of the relevant 3 .

\hline \& (iv) \& \[
$$
\begin{aligned}
& -15000-15000=80000 a \\
& \text { OR } \\
& -3000-10500-15000=(80000 \\
& -m) a \\
& \\
& -1500=m a \\
& \text { Mass is } 4000 \mathrm{~kg}
\end{aligned}
$$

\] \& | A1 |
| :--- |
| M1 |
| A1 |
| A1 |
| 5 | \& | For applying Newton's second law with all appropriate forces $a=-0.375$ |
| :--- |
| For applying Newton's second law to B only, only 1 force Or cv(a) |

\hline \& (v) \& \[
$$
\begin{aligned}
& -15000-10500 \pm T \\
& 0.375) \\
& T= \pm 1500 \rightarrow \text { forward force } \\
& \text { on } E \text { of } 1500 \mathrm{~N} \\
& \text { OR (working with A and B) } \\
& -1500-3000 \pm T \\
& \quad=(80000-64000)(- \\
& \begin{array}{l}
0.375) \\
T= \pm 1500 \rightarrow \text { forward force } \\
\text { on } E \text { of } 1500
\end{array}
\end{aligned}
$$

\] \& | B1ft |
| :--- |
| B1 2 |
| B1ft |
| B1 | \& | Follow through cv ($\left.m_{\mathrm{E}}, a\right)$, or accept use of m_{E}, a |
| :--- |
| Follow through $\mathrm{cv}\left(m_{\mathrm{E}}, a\right)$, or accept use of m_{E}, a |

\hline
\end{tabular}

7	(i)	$0=6+(\pm) 1.5 a$	M 1	For using $v=u+a t$ with $v=0$

		$\begin{aligned} & a=(\mp) 4 \mathrm{~ms}^{-2} \\ & -m g \sin 15^{\circ}-F=m a \end{aligned}$ $-0.1 \times 9.8 \sin 15^{\circ}-F=0.1 \times(-$ 4) $\begin{aligned} & R=0.1 g \cos 15^{\circ} \\ & 0.146357 \ldots=\mu 0.946607 \end{aligned}$ Coefficient is 0.155	A1 M1 A1 B1 M1 A1	7	For applying Newton's second law with 2 forces For using $F=\mu R$ Anything between 0.15 and 0.16 inclusive
	(ii)	$m g \sin 15^{\circ}>\mu m g \cos 15^{\circ}$ (or $\left.\tan 15^{\circ}>\mu\right)$ \rightarrow particle moves down	M1	2	For comparing weight component with frictional force (or tan 'angle of friction' with μ) Awarded if conclusion is correct even though values are wrong
	(iii)	$\begin{aligned} & (6+0) \div 2=s \div 1.5 \\ & s=4.5 \\ & m g \sin 15^{\circ}-F=m a \\ & 0.25364 \ldots-0.146357 \ldots= \\ & 0.1 a \\ & \\ & v^{2}=2(1.07285 \ldots) 4.5 \end{aligned}$ Speed is $3.11 \mathrm{~ms}^{-1}$	M1 A1 M1 A1 M1 A1	6	For using $(u+v) \div 2=s \div t$ For using Newton's second law with 2 forces Values must be correct even if not explicitly stated. Note that the correct value of friction may legitimately arise from a wrong value of μ and a wrong value of R For using $v^{2}=2$ as with any value of a Accept anything rounding to 3.1 from correct working

$\begin{array}{ll}1 & \text { (i) } \\ & \\ & \\ & \text { (ii) }\end{array}$	Net force on trailer is $+/-\left(700-\mathrm{R}_{\mathrm{T}}\right)$	B1		
		M1		For applying Newton's second law to the trailer with 2 terms on LHS (no vertical forces) $\mathrm{ftcv}\left(+/-\left(700-\mathrm{R}_{\mathrm{T}}\right)\right)$
	$700-\mathrm{R}_{\mathrm{T}}=600 \times 0.8$	A1ft		
	Resistance is 220 N	A1	4	
		M1		For applying Newton's second law to the car or to the whole, with a $=+/-0.8$ (no vertical forces)
	$\begin{array}{r} 2100-700-\mathrm{R}_{\mathrm{C}}= \\ 1100 \times 0.8 \end{array}$	A1ft		
	or			$\mathrm{ft} \mathrm{cv}(220)$
	$\begin{array}{r} 2100-\left(\mathrm{R}_{\mathrm{C}}+220\right)= \\ (1100+600) \mathrm{x} \end{array}$			
	0.8			
	Resistance is 520 N	A1	3	

2 (i)		M1		For resolving forces vertically
	15×0.28 and 11x 0.8	A1		Allow use of $=16.3$ and $=53.1$
	$\begin{aligned} & Y=15 \times 0.28+11 \times 0.8- \\ & 13 \end{aligned}$	A1ft		Ft $\operatorname{cv}(15 \times 0.28$ and 11x 0.8)
	Component is zero AG	A1	4	SR 15sin +11 sin $-13=0$ gets M1A0A1ftA0
(ii)		M1		For resolving forces horizontally
	$\begin{aligned} & \mathrm{X}=15 \times 0.96-11 \mathrm{x} \\ & 0.6 \end{aligned}$	A1		Allow use of $=16.3$ and $=53.1$
	Magnitude is 7.8 N	A1	3	Accept 7.79, -7.8
(iii)	Direction is that of the (+ve) x -axis	B1	1	Do not allow horizontal, 90° from vertical. Do not award if $=16.3$ and $=53.1$ have been used.

3	(i)	$\mathrm{T}=0.3 \mathrm{~g}$	B1		At particle (or 0.3g-T=0.3a)
	(ii)	$\mathrm{F}=\mathrm{T}$	B1		Or $\mathrm{F}=\operatorname{cv}(\mathrm{T}$ at particle) \quad (or $\mathrm{T}-\mathrm{F}=0.4 \mathrm{a})$
		$\mathrm{R}=0.4 \mathrm{~g}$	B1		
			M1		For using $\mathrm{F}=\mu \mathrm{R}$
		Coefficient is 0.75	A1	5	
			M1		For resolving 3 relevant forces on B horizontally, $\mathrm{a}=0$
		$X=0.3 \mathrm{~g}+0.3 \mathrm{~g}$	A1ft		Ft X $=0.3 \mathrm{~g}+\operatorname{cv}(\mu)$
					$\mathrm{cv}(\mathrm{R})$
		$\mathrm{X}=5.88 \mathrm{~N}$	A1	3	

4	(i) (ii)(a) (ii)(b)	Momentum before collision $=+/-(0.8 \times 4-0.6 \times 2)$ Momentum after collision $=+/-0.8 \mathrm{v}_{\mathrm{L}}+0.6 \times 2$ Speed is $1 \mathrm{~ms}^{-1}$ $0.6 x 2-0.7 x 0.5$ Total is $0.85 \mathrm{kgms}^{-1}$ Total momentum +ve after the collision. If N continues in its original direction, both particles have a negative momentum. N must reverse its direction. $\begin{aligned} & 0.6 \times 2-0.7 \times 0.5(= \\ & 0.85)=0.7 \mathrm{v} \\ & \text { Speed is } 1.21 \mathrm{~ms}^{-1} \end{aligned}$	B1 B1 M1 A1 M1 A1 DM 1 A1 A1ft A1	2	Or momentum change L $0.8 \mathrm{x} 4+/-0.8 \mathrm{v}_{\mathrm{L}}$ Accept inclusion of g in both terms Momentum change N $0.6 x 2+0.6 x 2$ Accept inclusion of g in both terms For using the principle of conservation of momentum even if g is included throughout Accept -1 from correct work (g not used). Must be a difference. SR $0.6 \mathrm{x} 1-0.7 \times 0.5 \mathrm{M} 1$ Must be positive Or $0.6 \mathrm{v}+0.7 \mathrm{w}$ is positive, confirming that the momentum is shared between two particles. No reference need be made to the physically impossible scenario where M and N both might continue in their original directions. ft cv (0.85). Award M1 if not given in ii(a). Positive. Accept (a.r.t) 1.2 from correct work
5	(i) (ii) (iii)	```\(1.8 \mathrm{t}^{2} / 2 \quad(+\mathrm{C})\) \((\mathrm{t}=0, \mathrm{v}=0) \mathrm{C}=0\) Expression is \(1.8 \mathrm{t}^{2} / 2\) \(0.9 t^{3} / 3 \quad(+K)\) \(0.3 \times 64\) 19.2 m AG \(\mathrm{u}=0.9 \times 4^{2}\) \(\mathrm{s}=14.4 \times 3+1 / 27.2 \times\) \(3^{2}\) \(19.2+75.6\)``` Displacement is 94.8 m OR $v=\int 7.2 d t$ $\mathrm{t}=0, \mathrm{v}=14.4, \mathrm{c}=$ 14.4 $\begin{aligned} & s=\int 7.2 t+14.4 d t \\ & \mathrm{t}=0, \mathrm{~s}=0, \mathrm{k}=0 \end{aligned}$ $\begin{aligned} & s=3.6 \times 3^{2}+14.4 \times 3 \\ & 19.2+75.6=94.8 \end{aligned}$ Displacement is 94.8 m	$\begin{aligned} & \mathrm{M}^{*} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \mathrm{D}^{*} \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { D* } \\ & \text { M1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	For using $v=\int a d t$ May be awarded in (ii). Accept c written and deleted. also for $1.8 \mathrm{t}^{2}+\mathrm{c}$ For using $s=\int v d t$ SR Award B1 for $(s=0, t=0) K=0$ if not already given in (i), or +K included and limits used. For using limits 0 to 4 (or equivalent) For using ' u ' $=v(4)$ For using $s=u t+1 / 2 \times 7.2 t^{2}$ with non-zero u ($\mathrm{s}=75.6$) For adding distances for the two distinct stages For finding $v(4)$ Integration and finding non-zero integration constant Nb Using $\mathrm{t}=4, \mathrm{v}=14.4$ gives $\mathrm{c}=-14.4$ $s=\int 7.2 t-14.4 d t$ Integration and finding integration constant. $\mathrm{Nb} \mathrm{t}=4$ with $\mathrm{s}=19.2$ and $\mathrm{v}=7.2 \mathrm{t}-14.4$ gives $\mathrm{k}=19.2$ Substituting $\mathrm{t}=3\left(\mathrm{OR} 7\right.$ into $\left.\mathrm{s}=3.6 \mathrm{t}^{2}-14.4 \mathrm{t}+19.2\right)$ $(\mathrm{s}=75.6)\left(\mathrm{OR} \mathrm{~s}=3.6 \mathrm{x} 7^{2}-14.4 \times 7+19.2\right)$ Adding two distinct stages OR $\mathrm{s}=3.6 \mathrm{x} 7^{2}-14.4 \mathrm{x} 7+19.2=94.8 \text { final M1A1 }$

6 (i) $1 / 225 \mathrm{v}_{\mathrm{m}}=8$ or \quad B*1 Do not accept solution based on isosceles or right
$1 / 2 \mathrm{Tv}_{\mathrm{m}}+1 / 2(25-\mathrm{T}) \mathrm{v}_{\mathrm{m}}=$

	8			
	Greatest speed is	D*B	2	
	0.64	1		
	ms^{-1}			
(ii)		M1		For using $\mathrm{v}=\mathrm{u}+$ at or the idea that gradient represents acceleration
	$\mathrm{V}=0.02 \times 40$	A1		
	$\mathrm{V}=0.8$	A1	3	
(iii)		M1		For using the idea that the area represents displacement. nb trapezium area is $16+8+8$
		M1		For $\mathrm{A}=1 / 2\left(\mathrm{~L}_{1}+\mathrm{L}_{2}\right) \mathrm{h}$ or other appropriate breakdown
	$\begin{aligned} & 1 / 2(70+\mathrm{T}) \times 0.8=40- \\ & 8 \end{aligned}$	A1ft		$1 / 2(30+\mathrm{T}) \times 0.8=40-8-1 / 2 \times 40 \times 0.8 \mathrm{ft} \mathrm{cv}(0.8)$
	Duration is 10s	A1	4	
(iv)		M1		For using $\mathrm{v}=\mathrm{u}+$ at or the idea that gradient represents acceleration
	$0=0.8+\mathrm{a}(30-10)$	A1ft		$\mathrm{ft} \mathrm{cv}(10)$ and $\operatorname{cv}(0.8)$
	Deceleration is $0.04 \mathrm{~ms}^{-2}$	A1	3	Accept -0.04 from correct work
	Or	M1		Using the idea that the area represents displacement.
	$40-8-1 / 2 \times 40 \times 0.8-$	A1ft		$\mathrm{Ft} \operatorname{cv}(0.8$ and 10)
	10×0.8	A1		Accept -0.04 from correct work. $\mathrm{d}=-0.04$ A0
	$\begin{aligned} & =0.8(30-10)-\mathrm{a}(30- \\ & 10)^{2} / 2 \end{aligned}$			
	Deceleration is			
	$0.04 \mathrm{~ms}^{-2}$			

7	(i)	$\mathrm{R}=0.5 \mathrm{~g} \cos 40^{\circ}$	B1		$\mathrm{R}=3.7536$
		$\mathrm{F}=0.6 \times 0.5 \mathrm{gcos} 40^{\circ}$	M1		For using $\mathrm{F}=\mu \mathrm{R}$
		Magnitude is 2.25 N AG	A1	3	
	(ii)		M1		For applying Newton's second law (either case) //slope, two forces
		$\begin{aligned} & -/+0.5 \mathrm{~g} \sin 40^{\circ}-\mathrm{F}= \\ & 0.5 \mathrm{a} \end{aligned}$	A1		Either case
		(a) Acceleration is	A1		Accept 10.8 from correct working (both forces have the same sign)
		$10.8 \mathrm{~ms}^{-2}$ (b) Acceleration is	A1	4	Accept -1.79 from correct working (the forces have opposite sign) Accept ! 1.8(0)
	(iii)a)	$\begin{aligned} & 1.79 \mathrm{~ms}^{-2} \\ & 0=4+(-10.8) \mathrm{T}_{1} \\ & \mathrm{~T}_{1}=0.370(3) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Requires appropriate sign
					Accept 0.37
	b)		M1		For complete method of finding distance from A to highest point using a(up) with appropriate sign
		$\begin{gathered} 0=4^{2}+2(-10.8) \mathrm{s} \text { or } \\ \mathrm{s}=(0+4) \times 0.37 / 2 \text { or } \\ \mathrm{s}=4(0.370)+ \\ 1 / 2(- \\ 10.8)(0.370)^{2} \end{gathered}$	$\begin{aligned} & \text { A1 } \\ & \mathrm{ft} \end{aligned}$		$\begin{aligned} & \mathrm{ft} \mathrm{a}(\mathrm{up}) \text { and/or } \mathrm{T}_{1} \\ & (\mathrm{~s}=0.7405) \end{aligned}$
			M1		For method of finding time taken from highest point to A and not using a(up)
		$0.7405=1 / 2(1.79) \mathrm{T}_{2}{ }^{2}$	A1ft		ft a (down) and $\operatorname{cv}(0.7405)\left(\mathrm{T}_{2}=0.908\right.$ approx)
		$0.370+0.908$	M1		Using $\mathrm{T}=\mathrm{T}_{1}+\mathrm{T}_{2}$ with different values for $\mathrm{T}_{1}, \mathrm{~T}_{2}$
		$=1.28 \mathrm{~s}$	A1	8	3 significant figures cao

1(i)	$\mathrm{X}=5$	B1	$\mathrm{X}=-5 \mathrm{~B} 0$. Both may be seen/implied in (ii)			
	$\mathrm{Y}=12$	B1 [2]	No evidence for which value is X or Y available from (ii) award B1 for the pair of values 5 and 12 irrespective of order			
(ii)	$\mathrm{R}^{2}=5^{2}+12^{2}$	M1	For using $\mathrm{R}^{2}=\mathrm{X}^{2}+\mathrm{Y}^{2}$			
	Magnitude is 13 N	A1	Allow 13 from $X=-5$			
	$\tan \theta=12 / 5$	M1	For using correct angle in a trig expression			
	Angle is 67.4°	$\begin{aligned} & \text { A1 } \\ & {[4]} \\ & \hline \end{aligned}$	SR: $p=14.9$ and $Q=11.4$ giving $R=13+/-0.1 \quad B 2$, Angle $=67.5+/-0.5$ B2			
2(i)	$250+1 / 2(290-250)$	M1	Use of the ratio 12:12 (may be implied), or $\mathrm{v}=\mathrm{u}+\mathrm{at}$			
	$\mathrm{t}=270$	$\begin{aligned} & \text { A1 } \\ & {[2]} \end{aligned}$				
(ii)		M1	The idea that area represents displacement			
	$\begin{aligned} & \frac{1}{2} \times 40 \times 12+210 \times 12+1 / 2 \times 20 \times 12- \\ & 1 / 2 \times 20 \times 12 \text { or } 1 / 2 \times 40 \times 12+210 \times 12 \\ & \text { or } 1 / 2 \times(210+250) \times 12 \mathrm{etc} \end{aligned}$	M1	Correct structure, ie triangle $1+$ rectangle + triangle3 \|triangle4	with triangle3 =	triangle4	, triangle1 + rectangle2, trapezium $1 \& 2$, etc
		$\begin{aligned} & \mathrm{A} 1 \\ & {[3]} \end{aligned}$				
(iii)	appropriate structure, ie triangle + rectangle + triangle + \|triangle	, triangle + rectangle + 2triangle, etc	M1	All terms positive		
	Distance is 3000 m	$\begin{aligned} & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	Treat candidate doing (ii) in (iii) and (iii) in (ii) as a mis-read.			
3 (i)		M1	An equation with R, T and 50 in linear combination.			
	$\mathrm{R}+\mathrm{Tsin} 72^{\circ}=50 \mathrm{~g}$	A1	$\mathrm{R}+0.951 \mathrm{~T}=50 \mathrm{~g}$			
		[2]				
(ii)	$\mathrm{T}=50 \mathrm{~g} / \mathrm{sin} 72^{\circ}$	M1	Using $\mathrm{R}=0$ (may be implied) and Tsin72 ${ }^{\circ}=50$ (g)			
	$\mathrm{T}=515 \quad$ (AG)	A1	Or better			
	$\mathrm{T}=\mathrm{mg}$	B1				
	$\mathrm{m}=52.6$	B1	Accept 52.5			
(iii)	$\mathrm{X}=\mathrm{T} \cos 72^{\circ}$	B1	Implied by correct			
			answer			
	$\mathrm{X}=159$	B1	Or better			

4(i)	In Q4 right to left may be used as the positive sense throughout. $\begin{aligned} & 0.18 \times 2-3 \mathrm{~m}=0 \\ & \mathrm{~m}=0.12 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	For using Momentum 'before' is zero 3 marks possible if g included consistently
(iia)	$\begin{aligned} & \text { Momentum after } \\ & \quad=-0.18 \times 1.5+1.5 \mathrm{~m} \\ & 0.18 \times 2-3 \mathrm{~m}=-0.18 \times 1.5+1.5 \mathrm{~m} \\ & \mathrm{~m}=0.14 \end{aligned}$	B1 M1 A1 [3]	For using conservation of momentum 3 marks possible if g included consistently
(iib)	$\begin{aligned} & 0.18 \times 2-3 \mathrm{~m} \\ & =(0.18+\mathrm{m}) 1.5 \\ & \mathrm{~m}=0.02 \\ & 0.18 \times 2-3 \mathrm{~m}=-(0.18+\mathrm{m}) 1.5 \\ & \mathrm{~m}=0.42 \end{aligned}$	$\begin{aligned} & \hline \text { B1ft } \\ & \\ & \text { B1 } \\ & \text { B1ft } \\ & \text { B1 } \\ & \text { [4] } \end{aligned}$	ft wrong momentum ‘before’

5(i)	$8.4^{2}-2 \mathrm{gs}_{\max }=0$ Height is 3.6 m (AG)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Using $\mathrm{v}^{2}=\mathrm{u}^{2}+/-2 \mathrm{gs}$ with $\mathrm{v}=0$ or $\mathrm{u}=0$
(ii)	$\mathrm{u}=5.6$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Using $\mathrm{u}^{2}=+/-2 \mathrm{~g}(\mathrm{ans}(\mathrm{i})-2)$
(iii)	EITHER (time when at same height)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [6] } \end{aligned}$	Using $\mathrm{s}=\mathrm{ut}+1 / 2$ at ${ }^{2}$ for P and for $\mathrm{Q}, \mathrm{a}=+/-\mathrm{g}$, expressions for s terms must differ Or $8.4 \mathrm{t}\left(-1 / 2\right.$ gt $\left.^{2}\right)=5.6 \mathrm{t}\left(-1 / 2\right.$ gt $\left.^{2}\right)+/-2$ Correct sign for $\mathrm{g}, \mathrm{cv}(5.6),+/-2$ in only one equation cao Using $\mathrm{v}=\mathrm{u}+\mathrm{at}$ for P and for $\mathrm{Q}, \mathrm{a}=+/-\mathrm{g}, \mathrm{cv}(\mathrm{t})$ Correct sign for $\mathrm{g}, \mathrm{cv}(5.6)$, candidates answer for t (including sign) cao
	OR (time when at same speed in opposite directions) $\mathrm{v}=8.4$-gt and -v=5.6-gt $\mathrm{v}=1.4\{$ or $\mathrm{t}=5 / 7(0.714)\}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Using $\mathrm{v}=\mathrm{u}+\mathrm{at}$ for P and for $\mathrm{Q}, \mathrm{a}=+/-\mathrm{g}$ Correct sign for $\mathrm{g}, \mathrm{cv}(5.6)$ Only one correct answer is needed
	$\begin{aligned} & \text { (with } v=1.4 \text {) } \\ & 1.4^{2}=8.4^{2}-2 \mathrm{gs}_{\mathrm{p}} \text { and } \end{aligned}$	M1	Using $\mathrm{v}^{2}=\mathrm{u}^{2}+2$ as for P and for $\mathrm{Q}, \mathrm{a}=+/-\mathrm{g}, \mathrm{cv}(\mathrm{v})$
	$\begin{aligned} & \quad(-1.4)^{2}=5.6^{2}-2 \mathrm{gs}_{\mathrm{Q}} \\ & \mathrm{~S}_{\mathrm{P}}=3.5 \text { and } \mathrm{s}_{\mathrm{Q}}=1.5 \\ & \{(\text { with } \mathrm{t}=5 / 7) \end{aligned}$	A1 A1	Correct sign for $\mathrm{g}, \mathrm{cv}(5.6)$, candidate's answer for v (including - for Q) cao
		M1	Using $\mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{at}^{2}$ for P and for $\mathrm{Q}, \mathrm{a}=+/-\mathrm{g}, \mathrm{cv}(\mathrm{t})$
	$\begin{aligned} & \mathrm{s}=5.6 \times 0.714-1 / 2 \mathrm{gx} 0.714^{2} \\ & \mathrm{~s}_{\mathrm{P}}=3.5 \text { and } \mathrm{s}_{\mathrm{Q}}=1.5 \end{aligned}$	A1 A1	Correct sign for $\mathrm{g}, \mathrm{cv}(5.6)$, candidate's answer for t (including sign of t if negative) cao $\}$
	OR (motion related to greatest height and verification) $\begin{aligned} & 0=8.4-\mathrm{gt} \text { and } 0=5.6-\mathrm{gt} \\ & \mathrm{t}=6 / 7 \text { and } \mathrm{t}=4 / 7 \\ & \mathrm{v}_{\mathrm{P}}=8.4-0.714 \mathrm{~g} \text { and } \mathrm{v}_{\mathrm{Q}}=5.6-0.714 \mathrm{~g} \\ & \left\{0=\mathrm{v}_{\mathrm{P}}-\mathrm{g} / 7 \text { and } \mathrm{v}_{\mathrm{Q}}=0+\mathrm{g} / 7\right\} \end{aligned}$	M1 A1	Using $\mathrm{v}=\mathrm{u}+$ at t for P and for $\mathrm{Q}, \mathrm{a}=+/-\mathrm{g}$ Both values correct mid-interval t $(6 / 7+4 / 7) / 2=0.714$ $\{$ Or semi-interval $=6 / 7-4 / 7) / 2=1 / 7\}$
	$\mathrm{v}_{\mathrm{P}}=1.4$ and $\mathrm{v}_{\mathrm{Q}}=-1.4$	A1	
	$\begin{gathered} \mathrm{s}_{\mathrm{P}}=8.4 \times 0.714-1 / 2 \mathrm{gx} 0.714^{2} \text { and } \\ \mathrm{s}_{\mathrm{Q}}=5.6 \times 0.714-1 / 2 \mathrm{gx} 0.714^{2} \\ \left\{\mathrm{~s}_{\mathrm{P}}=0 / 7-1 / 2(-\mathrm{g}) \times(1 / 7)^{2}\right. \text { and } \\ \left.\mathrm{s}_{\mathrm{Q}}=0 / 7+1 / 2 \mathrm{gx}(1 / 7)^{2}\right\} \\ \mathrm{S}_{\mathrm{P}}=3.5 \quad \mathrm{~s}_{\mathrm{Q}}=1.5 \end{gathered}$	M1 A1	$\begin{aligned} & \mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{at}^{2} \text { for } \mathrm{P} \text { and for } \mathrm{Q} \text {, correct sign for } \mathrm{g}, \\ & \quad \operatorname{cv}(5.6) \text { and } \mathrm{cv}(\mathrm{t}) \\ & \left\{\mathrm{s}=\mathrm{vt}-1 / 2 \mathrm{at}^{2} \text { for } \mathrm{P} \text { and } \mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{at}^{2} \text { for } \mathrm{Q}\right\} \end{aligned}$
		A1	cao continued

5(iii) cont	OR (without finding exactly where or when) $\begin{gathered} \mathrm{v}_{\mathrm{P}}^{2}=8.4^{2}-2 \mathrm{~g}(\mathrm{~s}+/-2) \text { and } \\ \mathrm{v}_{\mathrm{Q}}^{2}=5.6^{2}-2 \mathrm{~g}[(\mathrm{~s}+/-2)] \\ \mathrm{v}_{\mathrm{P}}^{2}=\mathrm{v}_{\mathrm{Q}}{ }^{2} \text { for all values of } \mathrm{s} \text { so that } \end{gathered}$ the speeds are always the same at the same heights. $0=8.4-\mathrm{gt} \text { and } 0=5.6-\mathrm{gt}$ $\mathrm{t}_{\mathrm{P}}=6 / 7$ and $\mathrm{t}_{\mathrm{Q}}=4 / 7$ means there is a time interval when Q has started to descend but P is still rising, and there will be a position where they have the same height but are moving in opposite directions.	M1 A1 A1 M1 A1 A1	Using $\mathrm{v}^{2}=\mathrm{u}^{2}+2$ as for P and for $\mathrm{Q}, \mathrm{a}=+/-\mathrm{g}, \mathrm{cv}(5.6)$, different expressions for s . Correct sign for $\mathrm{g}, \mathrm{cv}(5.6)$, ($\mathrm{s}+/-2$) used only once cao. Verbal explanation essential Using $\mathrm{v}=\mathrm{u}+\mathrm{at} \mathrm{t}$ for P and for $\mathrm{Q}, \mathrm{a}=+/-\mathrm{g}$ Correct sign for g , correct choice for velocity of zero, $\operatorname{cv}(5.6)$ cao. Verbal explanation essential
6(i)	$\begin{aligned} & \mathrm{v}=0.004 \mathrm{t}^{3}-0.12 \mathrm{t}^{2}+1.2 \mathrm{t} \\ & \mathrm{v}(10)=4-12+12=4 \mathrm{~ms}^{-1} \end{aligned}$ (AG)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	For differentiating s Condone the inclusion of +c Correct formula for v (no +c) and $\mathrm{t}=10$ stated sufficient
(ii)	$\begin{align*} & v=0.8 t-0.04 t^{2} \quad(+C) \\ & 8-4+C=4 \\ & v=0.8 \times 20-0.04 \times 20^{2} \quad(+C) \\ & v(20)=16-16=0 \tag{AG} \end{align*}$	M1 A1 M1* M1 DA1 [5]	For integrating a Only for using $v(10)=4$ to find C Dependant on M1*
(iii)	$\begin{aligned} & \mathrm{S}=0.4 \mathrm{t}^{2}-0.04 \mathrm{t}^{3} / 3 \quad(+\mathrm{K}) \\ & \mathrm{s}(10)=10-40+60=30 \\ & 40-40 / 3+\mathrm{K}=30 \rightarrow \mathrm{~K}=10 / 3 \\ & \mathrm{~S}(20)=160-320 / 3+10 / 3=56.7 \mathrm{~m} \\ & \mathrm{OR} \\ & \mathrm{~s}(10)=10-40+60=30 \\ & \mathrm{~S}=0.4 \mathrm{t}^{2}-0.04 \mathrm{t}^{3} / 3 \\ & \mathrm{~S}(20)-\mathrm{S}(10)=26.6,26.7 \end{aligned}$ displacement is 56.7 m	M1 A1 B1 M1 A1 B1 [6] B1 M1 A1 M1 A1 B1	For integrating v Accept $0.4 \mathrm{t}^{2}-0.013 \mathrm{t}^{3}(+\mathrm{ct}+\mathrm{K}$, must be linear) For using $\mathrm{S}(10)=30$ to find K Not if S includes ct term Accept 56.6 to 56.7 , Adding 30 subsequently is not isw, hence B0 For integrating v Accept $0.4 \mathrm{t}^{2}-0.013 \mathrm{t}^{3}$ ($+\mathrm{ct}+\mathrm{K}$, must be linear) Using limits of 10 and 20 (limits 0,10 M0A0B0) For 53.3-26.7 or better (Note $\mathrm{S}(10)=26.7$ is fortuitously correct M0A0B0) Accept 56.6 to 56.7

4728 Mechanics 1

1	70×9.8 or 70 g	B1	$=686$
	70×0.3	B1	$=21$
	$686+21$	M1	+ cvs [70(9.8+0.3) gets B1B1M1]
	707 N	A1	
		$[4]$	

\(\left.$$
\begin{array}{|l|l|l|l|}\hline 2 & \begin{array}{l}+/-(40 \times 4-60 \times 3) \\
+/-([40+60] ~ v \\
+/-(40 \times 4-60 \times 3)=+/-([40+60] \mathrm{v} \\
\text { Speed }=0.2 \mathrm{~ms}^{-1}\end{array}
$$ \& B1 \& Difference of terms, accept with g

B1

Same as heavier or opposite lighter/"she" \& M1 \& A1 of terms, accept with g.

Accept inclusion of g in equation.

Not if g used. SR 40x4-60x3=[40 + 60] v;

v=0.2, as heavier, award 5 marks\end{array}\right\}\)| "Left" requires diagram for B1 |
| :--- |
| If same direction before collision award |
| B0B1M1A0B0 |

3 i		M1	Applies Pythagoras, requires +.
	$\sqrt{ }\left(12^{2}+15^{2}\right)$	A1	
	19.2 N	A1	
		M1	trig and R included between X and Y
	$\tan \theta=12 / 15, \tan \theta=15 / 12, \sin \theta=12 / 19.2, \cos \theta=15 / 19.2$	A1	Accept cv 19.2
	Bearing $=038.7^{\circ}$	A1 [6]	Accept 039 or 39 or art 39 from below (not given if X and Y transposed)
3ii	$E=19.2$	B1ft	ft cv 19.2
	Bearing $=180+38.7=219^{\circ}$	B1ft [2]	180+cv 38.7(-360) or correct answer

4 i	$\mathrm{v}=\mathrm{dx} / \mathrm{dt}$		M1	Uses differentiation, may be seen in (ii)
	$\mathrm{v}=4 \mathrm{t}^{3}-8 \mathrm{x} 2 \mathrm{t}$		A1	Accept with +c
	$\mathrm{v}(2)=4 \times 2^{3}-8 \times 2 \times 2$		M1	Substitutes 2 in cv v, explicit
	= 0	AG	A1	A0 if +c
	$x(2)=2^{4}-8 \times 2^{2}+16=0$	AG	B1 [5]	Substitutes 2 in displacement, explicit
4ii	$\mathrm{a}=\mathrm{dv} / \mathrm{dt}$		M1	Uses differentiation of v formula
	$\mathrm{a}=12 \mathrm{t}^{2}-16$		A1	$\text { Accept with }+c$
	$\mathrm{a}(2)=12 \times 2^{2}-16=32 \mathrm{~ms}^{-2}$		A1 [3]	A0 with +c

5 ia	$\begin{align*} & 250 \mathrm{a}=-150 \\ & \mathrm{a}=-0.6 \mathrm{~ms}^{-2} \tag{AG} \end{align*}$	M1	Values used in N2L for trailer F=+/-150
		A1 [2]	Or -ve convincingly argued
5ib		M1	Applies N2L to car or car/trailer with
	$\begin{aligned} & 900 \mathrm{x}-0.6=\mathrm{D}-600 \text { or }(900+250) \mathrm{x}-0.6=\mathrm{D}-600-150 \\ & \mathrm{D}=60 \mathrm{~N} \end{aligned}$	A1	correct number of forces
		A1 [3]	(including T if $\mathrm{T}=0$ used later)
5 ic	$\begin{aligned} & 15^{2}=18^{2}+2 x(-0.6) s \\ & \mathrm{~s}=82.5 \mathrm{~m} \end{aligned}$	M1	Uses $\mathrm{v}^{2}=\mathrm{u}^{2}+2(+/-0.6)$ s with 15,18
		A1 [2]	Positive, allow from $18^{2}=15^{2}+2 \mathrm{x} 0.6 \mathrm{~s}$
5iia		M1	Applies N2L to car+trailer with F(driving) F(resisting), F (wt cmpt-allow without g), or each part, as above and T.
	$(900+250) \mathrm{a}=980-600-150$	A1	$900 \mathrm{a}=980-600+/-900 \times 9.8 \sin 3-\mathrm{T}$
5iib	$\mathrm{a}=0.713 \mathrm{~ms}^{-2} \quad+/-(900+250) \times \mathrm{x} 9.8 \sin 3$	A1	$250 \mathrm{a}=\mathrm{T}-150+/-250 \times 9.8 \sin 3$
		A1 [4]	Allow (art) 0.71 from correct work
		M1	N2L for trailer, cv a, with correct number
	$250 \times 0.713=T-150+250 \times 9.8 \sin 3$	A1	of forces of correct type. Or for car $900 \times 0.713=-\mathrm{T}-600+900 \times 9.8 \sin 3+980$
	$\mathrm{T}=200 \mathrm{~N}$	A1 [3]	Anything rounding to 200 (3sf)

7 i	$\mathrm{s}=0.5 \times 1.4 \times 0.8^{2}$	M1	Uses s = $0.5 \mathrm{x} 1.4 \mathrm{t}^{2}$
	$\mathrm{s}=0.448 \mathrm{~m}$	A1	Not 0.45
	$\mathrm{v}=1.4 \times 0.8$	M1	Uses $\mathrm{v}=1.4 \mathrm{t}$
	$\mathrm{v}=1.12 \mathrm{~ms}^{-1}$	A1 ${ }_{\text {[4] }}$	
7ii	$0^{2}=1.12^{2}-2 \times 9.8 \mathrm{~s}$	M1	Uses $0^{2}=u^{2}-2 \mathrm{gs}$ or $\mathrm{u}^{2}=2 \mathrm{gs}$
	$\mathrm{s}=0.064 \mathrm{~m}$	A1	Allow verification
	$0=1.12-9.8 t \quad(t=0.114 s)$	M1	or $0.064=1.12 \mathrm{t}-4.9 \mathrm{t}^{2}$
	$\mathrm{t}=(0.114+0.8)=0.914 \mathrm{~s}$	A1 [4]	Allow 0.91 \{or $0=1.12 \mathrm{t}-4.9 \mathrm{t}^{2}$ and halve t
7iii	Scalene triangle, base on taxis	B1	NB Award A1 for 0.91 on t axis if total
	right edge steeper and terminates on axis, or crosses axis at $\mathrm{t}=0.91$	$\begin{array}{\|l} \mathrm{B} 1 \\ \hline \end{array}$	time not given in (ii)
7iv		M1	Uses N2L for A or B with attempt at 2 forces
		A1	Either
	$1.4 \mathrm{xA}=9.8 \mathrm{xA}-5.88$ or $1.4 \mathrm{xB}=5.88-9.8 \mathrm{xB}$	A1	
	$\mathrm{A}=0.7$	A1	Not 0.53
7va	$B=0.525$	[4]	
	$\mathrm{T}=0.5 \times 9.8+2 \times 5.88$	M1	Uses tension and 0.5 g without particle weights
7 vb	$\mathrm{T}=16.66 \mathrm{~N}$	A1 [2]	Allow 16.7
	$\mathrm{T}=4.9 \mathrm{~N}$	B1 $[1]$	

4728 Mechanics 1

1(i)	$900 \mathrm{a}=600-240$		M1
	$\mathrm{a}=0.4 \mathrm{~ms}^{-2}$	N2L with difference of 2 forces, accept 360	
		A1	
(ii)	$9=5+0.4 \mathrm{t}$	$[2]$	
	$\mathrm{t}=10 \mathrm{~s}$	M1	$\mathrm{v}=\mathrm{u}+0.4 \mathrm{t}$ or $\mathrm{v}=\mathrm{u}+(\mathrm{cv} 0.4) \mathrm{t}$
	$9^{2}=5^{2}+2 \mathrm{x} 0.4 \mathrm{~s}$	A1	
	$\mathrm{s}=70 \mathrm{~m}$	M1	or $\mathrm{s}=(\mathrm{u}+\mathrm{v}) \mathrm{t} / 2$ or $\mathrm{s}=\mathrm{ut}+0.5 \mathrm{xcv}(0.4) \mathrm{t}^{2}$
		A1	

2(i)	Resolves a force in 2 perp. directions	M1*	Uses vector addition or subtraction
	Uses Pythagoras $\mathrm{R}^{2}=$	D*M1	Uses cosine rule $R^{2}=$
	$(14 \sin 30)^{2}+$	A1	$14^{2}+12^{2}-$
	$\begin{aligned} & (12+14 \cos 30)^{2} \\ & \left\{\text { or } \mathrm{R}^{2}=(12 \sin 30)^{2}+(14+12 \cos 30)^{2}\right\} \end{aligned}$	A1	$2 \times 14 \times 12 \cos 150$
	$\begin{equation*} \mathrm{R}=25.1 \tag{AG} \end{equation*}$	$\begin{aligned} & \text { A1 } \\ & \text { [5] } \end{aligned}$	$\begin{aligned} & \text { cso (Treat } R^{2}=14^{2}+12^{2}+2 \times 14 \times 12 \cos 30 \\ & \quad \text { as correct) } \end{aligned}$
(ii)	Trig to find angle in a valid triangle		Angle should be relevant
	$\tan B=7 / 24.1, \sin B=7 / 25.1, \cos B=24.1 / 25 .$ $\mathrm{B}=016,(0) 16.1^{\circ} \text { or }(0) 16.2^{\circ}$	A1 [3]	$\sin B / 14=\sin 150 / 25.1$. Others possible. Cosine rule may give (0)16.4, award A1

3(i) (ii)	$\mathrm{a}=6 / 5$	M1	Acceleration is gradient idea, for portion of graph
	$\mathrm{a}=1.2 \mathrm{~ms}^{-2}$	A1	Accept 6/5
		[2]	
	$s=(6 x 10 / 2) \quad\{$ or $(6 \times 5 / 2)$	M1	Area under graph idea or a formula used correctly
	$\mathrm{x} 2 \quad \mathrm{x} 4\}$	M1	Double \{Quadruple\} journey
(iii)	$\mathrm{s}=60 \mathrm{~m}$	A1	
		[3]	
		M1	$\mathrm{v}=\mathrm{u}+\mathrm{at}$ idea, t not equal to 17 (except $\mathrm{v}=1.2 \mathrm{t}-24$)
	$\mathrm{v}=-6+1.2(17-15)$	A1	$0=\mathrm{v}+\mathrm{cv}(1.2)(20-17), \mathrm{v}^{2}-2.4 \mathrm{v}-21.6=0$, etc
	$\mathrm{v}=-3.6 \mathrm{~ms}^{-1}$	$\begin{aligned} & \mathrm{A} 1 \\ & {[3]} \end{aligned}$	$\boldsymbol{S} \boldsymbol{R} \mathrm{v}=3.6$ neither A1, but give both A1 if final answer given is -3.6

4(i)	$\mathrm{F}=15 \sin 50-15 \sin 30=3.99 \mathrm{~N}$	M1	Difference of 2 horizontal components, both <15
	Left	A1	Not 4 or 4.0
(ii)		B1	Accept reference to 30 degree string
	$\mathrm{R}=\mathrm{f}(30,15 \cos 50,15 \cos 30)$	M1	May be given in ii if not attempted in i
	$\mathrm{R}=30-15 \cos 50-15 \cos 30$	A1	Equating 4 vertical forces/components
	$\mu=3.99 / 7.36(78)$	A1	$=7.36$ acceptable
	$\mu=0.541$ or 0.542 or 0.543	M1	Using $\mathrm{F}=\mu \mathrm{R}$, with cv(3.99) and $\operatorname{cv}(7.36(78 .))$.
		A1	Accept 0.54 from correct work, e.g. $4 / 7.4$
	[5]		

5(i)	2400x5-3600x3	B1	Award if g included
	$2400 \mathrm{v}+3600 \mathrm{v}$	B1	Award if g included
	$2400 x 5-3600 x 3=2400 v+3600 v$	M1	Equating momentums (award if g included)
	$\mathrm{v}=0.2 \mathrm{~ms}^{-1}$	A1	Not given if g included or if negative.
	B	B1	
(ii)(a)	+/-(-2400v + 3600v)	B1	No marks in(ii) if g included
	$2400 \times 5-3600 \times 3=-2400 v+3600 v$	M1	Equating momentums if "after" signs differ
	$\mathrm{v}=1 \mathrm{~ms}^{-1}$	A1	Do not accept if - sign "lost"
(b)	$\mathrm{I}=2400 \times(5+/-1) \text { or } 3600 \times(3+/-1)$	M1	Product of either mass and velocity change
	$\mathrm{I}=14400 \mathrm{kgms}^{-1}$	$\begin{aligned} & \text { A1 } \\ & {[5]} \end{aligned}$	Accept -14400

6(i)	$x=0.01 t^{4}-0.16 t^{3}+0.72 t^{2}$.			
	$\mathrm{v}=\mathrm{dx} / \mathrm{dt}$		M1	Uses differentiation, ignore +c
	$\mathrm{v}=0.04 t^{3}-0.48 t^{2}+1.44 t$.		A1	or $\mathrm{v}=4\left(0.01 t^{3}\right)-3\left(0.16 t^{2}\right)+2(0.72 t)$
	$\mathrm{v}(2)=1.28 \mathrm{~ms}^{-1}$	AG	A1	Evidence of evaluation needed
			[3]	
(ii)	$\mathrm{a}=\mathrm{dv} / \mathrm{dt}$		M1	Uses differentiation
	$\mathrm{a}=0.12 t^{2}-0.96 t+1.44$		A1	or a $=3\left(0.04 t^{2}\right)-2(0.48 t)+1.44$
	$t^{2}-8 t+12=0$	AG	$\begin{aligned} & \text { A1 } \\ & \text { [3] } \end{aligned}$	Simplifies $0.12 t^{2}-0.96 t+1.44=0$, (or verifies the roots of QE make acceleration zero)
(iii)	$(\mathrm{t}-2)(\mathrm{t}-6)=0$		M1	Solves quadratic (may be done in ii if used to find v(6))
	$\mathrm{t}=2$		A1	Or Factorises v into 3 linear factors M1
	$\mathrm{t}=6$		A1	$v=0.04 t(t-6)^{2} \quad$ A1 \quad Identifies $t=6 \quad$ A1
	$\mathrm{v}(6)=0 \mathrm{~ms}^{-1}$		B1	Evidence of evaluation needed
			[4]	
(iv)			B1	Starts at origin
			B1	Rises to single max, continues through single min
			B1	Minimum on t axis, non-linear graph
	Away from A		B1	
			[4]	
(v)	$\mathrm{AB}=0.01 \mathrm{x} 6^{4}-0.16 \mathrm{x} 6^{3}+0.72 \mathrm{x} 6^{2}$		M1	Or integration of $v(t)$, with limits 0,6 or substitution,
	$\mathrm{AB}=4.32 \mathrm{~m}$		A1 [2]	using $\operatorname{cv}(6)$ from iii

7(i)	(R=)0.2x9.8cos45	M1	Not F $=0.2 \times 9.8 \cos 45$ or $0.2 \times 9.8 \sin 45$ unless followed
	$\mathrm{F}=1 \mathrm{xR}=1 \mathrm{x} .2 \mathrm{x} 9.8 \cos 45=1.386 \mathrm{~N} \quad$ AG	A1	by (eg) $\mathrm{Fr}=1 \mathrm{x}$ F $=1.386$ when M1A1
		[2]	
(ii)	Any 1 application of N2L // to plane with correct mass and number of forces	M1	Must use component of weight
	$0.4 a=0.2 \mathrm{gsin} 45+0.2 \mathrm{~g} \sin 45-1.38$ (592..)	A1	
	$\mathrm{a}=3.465 \mathrm{~ms}^{-2} \quad \mathrm{AG}$	A1	
	$0.2 \mathrm{a}=0.2 \mathrm{~g} \sin 45-\mathrm{T} \quad$ or		Accept with 3.465 (or close) instead of a
	$0.2 \mathrm{a}=\mathrm{T}+[0.2 \mathrm{~g} \sin 45-1.38(592 . .)]$	M1	Accept omission of [term] for M1
	$\mathrm{T}=0.693 \mathrm{~N}$	A1	Accept 0.69
		[5]	
	OR		
	Any 1 application of N2L // to plane with correct mass and number of forces		Must use component of weight
	$\begin{array}{lc} 0.2 \mathrm{a}=0.2 \mathrm{~g} \sin 45-\mathrm{T} & \text { or } \\ 0.2 \mathrm{a}=\mathrm{T}+[0.2 \mathrm{~g} \sin 45-1.38(592 . .)] \end{array}$	M1	Both correct. Accept omission of [term] for A1 only
	Eliminates a or T	M1	
	$\mathrm{a}=3.465 \mathrm{~ms}^{-2} \quad \mathrm{AG}$	A1	
	$\mathrm{T}=0.693 \mathrm{~N}$	A1	
(iii)	$\mathrm{v}^{2}=2 \times 3.465 \times 0.5$	M1	Using $v^{2}=0^{2}+2 \mathrm{xcv}(3.465) \mathrm{s}$
	$\mathrm{v}=1.86 \mathrm{~ms}^{-1}$	A1	
		[2]	
(iv)	For Q		
	(0.2)a $=(0.2) \mathrm{gsin} 45-(1)(0.2) \mathrm{gcos} 45$.	M1	Attempting equation to find a for Q
	$\mathrm{a}=0$ [AG]	A1	Accept from 0.2gsin45-1.386
	$\mathrm{T}=(3 / 1.86)=1.6(12)$	B1	Accept 2 sf
	For P		$a=693$
	$2.5=1.86(14 .) \mathrm{t}+.0.5 \mathrm{x}(9.8 \sin 45) \mathrm{t}^{2}$	M1	Using $2.5=\operatorname{cv}(1.86) \mathrm{t}+0.5 \mathrm{cv}(6.93) \mathrm{t}^{2}$ [not 9.8 or 3.465]
	$\mathrm{t}=0.6(223)$	A1	Accept 1sf
	time difference 1.612-0.622 $=0.99(0) \mathrm{s}$	A1	Accept art 0.99 from correct work

4728 Mechanics 1

1 (i)	$\begin{aligned} & 0.5 \times 6=0.5 \times 0.8+4 \mathrm{~m} \\ & \mathrm{~m}=0.65 \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	Uses CoLM If g used throughout, possible 3 marks
(ii)	$\begin{aligned} & 0.5 \times 6=-0.5 \times 0.8+4 \mathrm{~m} \\ & \mathrm{~m}=0.85 \end{aligned}$	M1 A1 A1 [3]	After momentums opposite signs If g used throughout, 0 marks
2 (i)	$\begin{aligned} \mathrm{T} & =400 \mathrm{~N} \\ \mathrm{D} & =400+900 \\ & =1300 \mathrm{~N} \end{aligned}$	B1 M1 A1 [3]	Order immaterial Or T + 900; sign correct
(ii)	$\begin{aligned} & 500 \times 0.6=\mathrm{T}-400 \\ & \mathrm{~T}=700 \mathrm{~N} \\ & 1250 \times 0.6=\mathrm{D}-900-700 \\ & \mathrm{D}=2350 \mathrm{~N} \\ & O R \\ & (500+1250) \times 0.6=\mathrm{D}-400-900 \\ & \mathrm{D}=2350 \mathrm{~N} \end{aligned}$	M1 A1 A1 M1 A1ft A1 M1 A1 A1 [6]	(Award M marks even if g included in ma terms. M marks require correct number forces) Uses N2L one object only Uses N2L other object $\mathrm{ft} \mathrm{cv}(\mathrm{T}$ from (ii)); allow T instead of its value Uses N2L for both objects
3 (i)	$5 \cos 30$ or $5 \sin 60$ or 4.33 $5 \cos 60$ or $5 \sin 30$ or 2.5	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	Order immaterial, accept $+/$-. May be awarded in (ii) if no attempt in (i)
(ii)	$\begin{aligned} & 7-4.33(=2.67) \text { and } 9-2.5(=6.5) \\ & \mathrm{R}^{2}=2.67^{2}+6.5^{2} \\ & \mathrm{R}=7.03 \\ & \tan \theta=6.5 / 2.67 \\ & \theta=67.6,67.7 \text { degrees } \end{aligned}$	$\begin{aligned} & \hline \text { M1* } \\ & \text { A1 } \\ & \mathrm{D}^{*} \mathrm{M} \\ & 1 \\ & \mathrm{~A} 1 \\ & \mathrm{D}^{*} \mathrm{M} \\ & 1 \\ & \mathrm{~A} 1 \\ & \quad[6] \\ & \hline \end{aligned}$	Subtracts either component from either force 3sf or better Valid trig for correct angle 3sf or better
4 (i)	$\begin{aligned} & 20 \cos 30 \\ & 20 \cos 30=3 a \\ & a=5.77 \mathrm{~ms}^{-2} \end{aligned}$	M1 M1 A1 [3]	Resolves 20 (accept 20 sin30) Uses N2L horizontally, accept g in ma term
(ii)	$\begin{aligned} & \mathrm{R}=3 \times 9.8+20 \sin 30(=39.4) \\ & \mathrm{F}=20 \cos 30(=17.3) \\ & 17.3=39.4 \mu \\ & \mu=0.44 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[5]} \\ & \hline \end{aligned}$	Resolves vertically (accept - , \cos if \sin in i); correct no. terms Correct (Neither R nor F need be evaluated) Uses $\mathrm{F}=\mu \mathrm{R}$

5 (i)	$\begin{aligned} & \hline V=\int 0.8 \mathrm{tdt} \\ & \mathrm{v}=0.8 \mathrm{t}^{2} / 2(+\mathrm{c}) \\ & \mathrm{t}=0, \mathrm{v}=13,(\mathrm{c}=13) \\ & \mathrm{v}=0.4 \times 6^{2}(+\mathrm{c}) \\ & \mathrm{v}=27.4 \mathrm{~ms}^{-1} \end{aligned}$	$$	Attempt at integration Award if c omitted
(ii)	$\begin{aligned} & \mathrm{s}=\sqrt{0.4 \mathrm{t}^{2}(+\mathrm{c}) \mathrm{dt}} \\ & \mathrm{~s}=0.4 \mathrm{t}^{3} / 3+13 \mathrm{t}(+\mathrm{k}) \\ & \mathrm{t}=0, \mathrm{~s}=0,(\mathrm{k}=0) \\ & \mathrm{s}=0.4 \times 6^{3} / 3+13 \times 6 \\ & \mathrm{~s}=106.8 \mathrm{~m} \end{aligned}$	M1* A1ft M1 D*M1 A1 [5]	Attempt at integration of $\mathrm{v}(\mathrm{t})$ $\mathrm{ft} \operatorname{cv}(\mathrm{v}(\mathrm{t})$ in (i)) Allow if $\mathrm{k}=0$ assumed. Accept 107 m .
(iii)	Fig. 2 Fig. 1 has zero initial velocity/gradient Fig. 3 does not have a increasing velocity/gradient	$\begin{gathered} \hline \text { B1 } \\ {[1]} \\ \text { B1 } \\ \text { B1 } \\ {[2]} \\ \hline \end{gathered}$	
$\begin{array}{rr} \hline 6 & \text { (i) } \\ & \text { a } \\ & b \end{array}$	$\begin{aligned} & 2.5=9.8 \mathrm{t}^{2} / 2 \\ & \mathrm{t}=0.714 \mathrm{~s} \text { or better or } 5 / 7 \\ & \mathrm{v}^{2}=2 \times 9.8 \times 2.5 \text { OR } \mathrm{v}=9.8 \times 0.714 \\ & \mathrm{v}=7 \mathrm{~ms}^{-1} \text { or } 6.99 \text { or art } 7.00 \end{aligned}$	M1 A1 $[2]$ M1 A1 $[2]$	Uses $s=0+/-\mathrm{gt}^{2} / 2$ Not awarded if - sign "lost" Uses $\mathrm{v}^{2}=0+/-2 \mathrm{gs}$ or $\mathrm{v}=\mathrm{u}+/$ - gt Not awarded if - sign "lost"
(ii)	$\begin{aligned} & \mathrm{R}=2 \times 9.8 \sin 60(=16.97=17) \\ & \mathrm{F}=0.2 \times 16.97(=3.395 \text { or } 3.4) \\ & \mathrm{Cmpt} \text { weight }=2 \times 9.8 \cos 60(=9.8) \\ & 2 \mathrm{a}=9.8-3.395 \\ & \mathrm{a}=3.2 \mathrm{~ms}^{-2} \\ & \text { Distance down ramp }=5 \mathrm{~m} \\ & \mathrm{v}^{2}=2 \times 3.2 \times 5 \\ & \mathrm{v}=5.66 \text { or } 5.7 \end{aligned}$	B1 M1 A1ft B1 M1 A1ft B1 M1 A1ft [9]	With incorrect angle, e.g $\mathrm{R}=2 \mathrm{x} 9.8 \cos 60(=9.8) \mathrm{B} 0$ $\mathrm{F}=0.2 \times 9.8$ ($=1.96$) M1A1 $\sqrt{ }$ Cmpt wt $=2 x 9.8 \sin 60(=16.97) \mathrm{B} 0$ $2 \mathrm{a}=16.97-1.96$ M1 $\mathrm{a}=7.5 \mathrm{~A} 1 \sqrt{ } \sqrt{ } \mathrm{ft} \mathrm{cv}(\mathrm{R}$ and Cmpt weight) $\begin{aligned} & v^{2}=2 \times 7.5 \times 5 \\ & v=8.66 \text { or } 8.7 \text { A1 } \sqrt{ } \quad \text { ft cv }(\sqrt{ }(10 \mathrm{a})) \end{aligned}$
7 (i)	$\begin{aligned} & \mathrm{p}=4-2 \times 0.4(=3.2) \\ & \mathrm{q}=1-2 \times 0.4(=0.2) \\ & 0.7 \times 3.2-0.3 \times 0.2=(1 \mathrm{x}) \mathrm{v} \\ & \mathrm{v}=2.18 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 A1 M1 A1 A1 $[6]$	Use of $v=u-0.4 t$ Accept q $=-0.2$ from $-1+2 * 0.4$ Uses CoLM on reduced velocities

(ii) a b	$\begin{aligned} & 0=1-0.4 \mathrm{t} \\ & \mathrm{t}=2.5 \mathrm{~s} \\ & \mathrm{P}=4 \times 3-0.5 \times 0.4 \times 3^{2} \\ & \mathrm{Q}=1 \times 2.5-0.5 \times 0.4 \times 2.5^{2} \\ & \mathrm{PQ}=10.2+1.25=11.45 \mathrm{~m} \end{aligned}$	B1 B1 B1 [3] M1 A1 M1 A1 A1 A1 [6]	Straight line with larger y intercept slopes towards t axis, but does not reach it. Straight line with negative y intercept slopes towards t axis, and gets to t axis before other line ends. SR if $t=2$ in ii give B1 if line stops before axis Finds when Q comes to rest (any method) Uses $s=u t-0.4 t^{2} / 2$ (nb $\quad 0^{(2)}=1^{(2)}-0.4 Q^{2} / 2 \quad \mathrm{~B} 1$; convincing evidence (graph to scale, or calculation that Q comes to rest and remains at rest at t less than 3, M1A1;graph A1 needs -ve v intercept) SR if $\mathrm{t}=2$ in iib, allow M1 for $\mathrm{s}=\mathrm{ut}-0.4 \mathrm{t}^{2} / 2$ And A1 for $\mathrm{PQ}=8.4$

Alternative for Q3 where 7 N and 9 N forces combined initially

3 (i)	$5 \cos 30$ or $5 \sin 60$ or 4.33 $5 \cos 60$ or $5 \sin 30$ or 2.5	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ {[2]} \end{gathered}$	Order immaterial, accept +/-. May be awarded in (ii) if no attempt in (i)
(ii)	$\begin{aligned} & \mathrm{Z}^{2}=7^{2}+9^{2}(=130, \mathrm{Z}=11.4017 \ldots) \\ & \text { cos(angle of } \mathrm{Z} \text { with y axis) }=9 / 11.4017 . . \\ & \text { angle of } \mathrm{Z} \text { with } y \text { axis }=37.8746 \ldots \\ & \text { Angle opposite } \mathrm{R} \text { in triangle of forces }= \\ & 180-(37.8746+90+30) \\ & =22.125(\text { Accept } 22) \\ & \mathrm{R}^{2}=5^{2}+11.4017^{2}-2 \times 5 \times 11.4017 \cos 22.125 \\ & \mathrm{R}(=7.0269)=7.03 \mathrm{~N} \\ & 11.4017^{2}=5^{2}+7.0269^{2}-2 \times 5 \times 7.0269 \cos \mathrm{~A} \\ & (\mathrm{~A}=142.33) \\ & \text { Angle between } \mathrm{R} \text { and y axis }=142.33-30- \\ & 90(=22.33) \\ & \theta(=90-22.33)=67.7 \text { degrees } \end{aligned}$	M1* A1 D*M1 A1 D*M1 A1 [6]	Z is resultant of 7 N and 9 N forces only R is resultant of all 3 forces Complete method Cosine rule to find R Or Sine Rule. A is angle between R and 5 N forces Complete method θ is angle between R and x axis

4728 Mechanics 1

1 i	$\begin{aligned} & x^{2}+(3 x)^{2}=6^{2} \\ & 10 x^{2}=36 \\ & x=1.9(0) \quad(1.8973 . .) \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	Using Pythagoras, 2 squared terms May be implied Not surd form unless rationalised $(3 \sqrt{ } 10) / 5$, $(6 \sqrt{ } 10) / 10$
ii	$\begin{aligned} & \tan \theta=3 x / x(=3 \times 1.9 / 1.9)=3 \\ & \theta=71.6^{\circ} \quad(71.565 . .) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A2 } \\ & \text { [3] } \end{aligned}$	Must target correct angle. Accept $\sin \theta=3 \times 1.9 / 6$ or $\cos \theta=1.9 / 6$ which give $\theta=71.8^{\circ}, \theta=71.5^{\circ}$ respectively, A1. SR $\theta=71.6^{\circ}$ from $\tan \theta=3 x / x$ if x is incorrect; x used A1, no evidence of x used A2
2 i		$\begin{array}{\|c\|} \hline \text { B1 } \\ \text { B1 } \\ {[2]} \end{array}$	Inverted V shape with straight lines. Starts at origin, ends on t-axis, or horizontal axis if no labelling evident
ii	$\begin{aligned} & 6=3 v / 2 \\ & v=4 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 A1 [3]	Not awarded if special (right angled, isosceles) triangle assumed, or $s=(u+v) t / 2$, or max v at specific t.
iii	$\begin{aligned} & \mathrm{T} \text { accn }=4 / 2.4 \text { or } \mathrm{s} \text { accn }=16 /(2 \times 2.4) \\ & \mathrm{T} \text { accn }=12 / 3 \mathrm{~s} \text { or } \mathrm{s} \text { accn }=10 / 3 \\ & \text { Deceleration }=4 /(3-12 / 3) \text { or } 16 / 2(6-10 / 3) \\ & \text { Deceleration }=3 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{aligned} & \hline \text { M1* } \\ & \text { A1 } \\ & \text { D*M1 }^{*} \text { A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Uses $t=v / a$ or $s=v^{2} / 2 a$. May be implied Accept 4/(3-1.67) or 16/2(6-3.33) Accept 3.01; award however $v=4$ obtained in (ii). $a=-3$ gets A0.
3 i	$\begin{align*} & 0.8 \mathrm{gsin} 30 \\ & 0.8 \times 0.2 \\ & 0.8 \times 9.8 \sin 30-T=0.8 \times 0.2 \\ & T=3.76 \mathrm{~N} \tag{AG} \end{align*}$	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	Not for 3.92 stated without justification Or 0.16 Uses N2L // to slope, 3 non-zero terms, inc $m a$ Not awarded if initial B1 withheld.
ii	$\begin{aligned} & 3.76-F=3 \times 0.2 \\ & F=3.16 \\ & 3.16=\mu \times 3 \times 9.8 \\ & \mu=0.107 \end{aligned}$	M1 A1 A1 M1 A1 [5]	Uses N2L, B alone, 3 non-zero terms Needs correct value of T. May be implied. Uses $F=\mu R$ (Accept with $R=3$, but not with $R=0.8 \mathrm{~g}(\cos 30), F=0.6, F=3.76, F=f($ mass $P))$ Not 0.11, 0.108 (unless it comes from using $\mathrm{g}=9.81$ consistently through question.

4 i	$\begin{aligned} & v^{2}=7^{2}-2 \times 9.8 \times 2.1 \\ & v=2.8 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	Uses $v^{2}=u^{2}-2 \mathrm{~g} s$. Accept $7^{2}=u^{2}+2 \mathrm{~g} s$
ii	$\begin{aligned} & v=0 \\ & 0^{2}=7^{2}-2 \times 9.8 s \\ & s=2.5 \mathrm{~m} \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	Velocity $=0$ at greatest height Uses $0=u^{2}-2$ gs. Accept $7^{2}=2 \times 9.8 s$.
iii	$v=-5.7$ (or $t=0.71$ oef to reach greatest height) $\begin{aligned} & -5.7=7-9.8 t \text { or } 5.7=(0+) 9.8 T \\ & t=1.3(0) \mathrm{s} \quad(1.2959 . .) \end{aligned}$	B1 M1 A1 [3]	Allows for change of direction Uses $v=u+$ or $-\mathrm{g} t$. Not 1.29 unless obtained from $\mathrm{g}=9.81$ consistently
5 i	$\begin{aligned} & 0.5 \times 6=0.5 v+m(v+1) \\ & 3=0.5 v+m v+m \\ & v(m+0.5)=-m+3 \end{aligned}$ AG	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	Uses CoLM. Includes g throughout MR-1
ii	$\begin{aligned} & \text { Momentum before }=+/-(4 m-0.5 \times 2) \\ & +/-(4 m-0.5 \times 2)=m v+0.5(v+1) \\ & 4 m-0.5 \times 2=m v+0.5(v+1) \\ & v(m+0.5)=4 m-1.5 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	Includes g throughout MR-1 Needs opposite directions in CoLM on "before" side only. RHS in format $a m+b$ or $b+a m$. Ignore values for a and b if quoted.
iii	$\begin{aligned} & 4 m-1.5=-m+3 \\ & 5 m=4.5 \\ & m=0.9 \mathrm{~kg} \\ & 0.9+v(0.9+0.5)=3 \text { or } 4 \times 0.9-1.5= \\ & v(0.9+0.5) \\ & v=(3-0.9) /(0.9+0.5)=2.1 / 1.4 \\ & v=1.5 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 M1 A1 [4]	Attempts to obtain eqn in 1 variable from answers in (i) and (ii) Ignore $m=-0.5$ if seen Substitutes for $m=0.9$ in any m, v equation obtained earlier.
6 ia b	$\begin{aligned} & \text { Perp }=10 \cos 20(=9.3967 \text { or } 9.4) \\ & / /=10 \sin 20(=3.4202) \\ & \mu=10 \sin 20 / 10 \cos 20=\tan 20(=3.42 / 9.4) \\ & \mu=0.364 \quad(0.36397 . .) \quad \text { AG } \end{aligned}$	B1 B1 [2] M1 A1 $[2]$	Includes g, MR -1 in part (i). Accept -ve values. Must use ${ }^{\prime} F_{1}^{\prime}=\mu_{1}^{\prime} R_{1}^{\prime}$ Accept after inclusion of g twice
ii	$\begin{aligned} & \text { No misread, and resolving of } 10 \text { and } T \\ & \text { required } \\ & R=10 \cos 20+T \cos 45 \\ & F=T \cos 45-10 \sin 20 \text { or } T \cos 45=\mu R+ \\ & 10 \sin 20 \\ & T \cos 45-3.42=0.364(9.4+T \cos 45) \\ & 0.707 T-3.42=3.42+0.257 T \\ & 0.45 T=6.84 \\ & T=15.2 \mathrm{~N} \quad(15.209 . .) \end{aligned}$	M1* A1 M1* A1 D*M1 A1 A1 $\quad[7]$	3 term equation perp plane, 2 unknowns $9.4+0.707 T$ (accept $9.4+.71 T$) 3 term equation // plane, 2 unknowns $0.707 T$ - 3.42 (accept $0.71 T$ - 3.4) Substitutes for F and R in $F=0.364 R$ Award final A1 only for $T=149 \mathrm{~N}$ after using 10 g for weight

7 i	$\begin{aligned} & a=\mathrm{d} v / \mathrm{d} t \\ & a=6-2 t \mathrm{~ms}^{-2} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	Differentiation attempt. Answer 6-t implies division by t
ii	$\begin{aligned} & s=\int \mathrm{v} t \\ & s=\int 6 t-t^{2} \mathrm{~d} t \\ & s=3 t^{2}-t^{3} / 3(+c) \\ & t=0, v=0, c=0 \\ & t=3, s=3 \times 3^{2}-3^{3} / 3 \\ & s=18 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { D*M1 } \\ & \text { A1 } \\ & \text { [5] } \end{aligned}$	Integration attempt on v Award if limits 0,3 used Requires earlier integration Does not require B1 to be earned.
iii	$\begin{aligned} & \text { Distance emaing }(=100-18)=82 \\ & \text { Total time }=3+82 / 9 \\ & T=12.1 \mathrm{~s} \quad(121 / 9) \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	Numerator not 100 Not 109/9
iv	$\begin{aligned} & \text { Distance before slows }=18+(22-3) \times 9 \\ & \text { Distance while decelerating }=200-189=11 \\ & \\ & 11=9 t-0.3 t^{2} \text { or } 11=(9+8.23) t / 2 \text { or } 8.23=9- \\ & 0.6 t \\ & t=1.28 \quad(1.2765 . ., \text { accept } 1.3) \\ & T=23.3 \text { s }(23.276 . .) \end{aligned}$	M1* A1 D*M1 A1 D*M1 A1 A1 [7]	($=189 \mathrm{~m}$) Two sub-regions considered Accept 10.99. 10.9 penalise -1PA. Uses $s=u t-0.5 \times 0.6 t^{2}$, or $v^{2}=u^{2}-2 \times 0.6 s$ with $s=(u+v) t / 2 \text { or } v=u+a t$ Finds t. (If QE, it must have 3 terms and smaller positive root chosen.)

4728 Mechanics 1

1 i	$\begin{aligned} & \mathrm{v}=4.2+9.8 \times 1.5 \\ & \mathrm{v}=18.9 \mathrm{~ms}^{-1} . \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	$\begin{aligned} & \text { Uses } v=u+g t \\ & 18.9(15) \text { from } g=9.81 \end{aligned}$
ii	$\begin{aligned} & \mathrm{s}=4.2 \times 1.5+9.8 \times 1.5^{2} / 2 \text { or } \\ & \\ & \mathrm{s}=17.325 \mathrm{~m} \quad 18.9^{2}=4.2^{2}+2 \times 9.8 \mathrm{~s} \end{aligned}$	M1 A1 [2]	Uses $s=u t+\mathrm{gt}^{2} / 2$ or $\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{gs}$ Accept 17.3
iii	$\begin{aligned} & \mathrm{v}^{2}=4.2+2 \times 9.8 \times(17.3(25)-5) \\ & \mathrm{v}=16.1 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \hline \text { A1 } \\ {[2]} \end{gathered}$	$\begin{aligned} & 18.9^{2}=\mathrm{u}^{2}+2 \times 9.8 \times 5 \\ & \mathrm{u}=16.1 \mathrm{~ms}^{-1} . \end{aligned}$ Accept answers close to 16.1 from correct working
2 i	Resolves a force in 2 perpendicular directions Uses Pythagoras $\begin{aligned} \mathrm{R}^{2}= & (12+19 \cos 60)^{2} \\ & +(19 \sin 60)^{2} \end{aligned}$ $\begin{aligned} & \mathrm{R}=27.1 \mathrm{~N} \\ & \left\{\mathrm{R}=\sqrt{ }\left((19+12 \cos 60)^{2}+(12 \sin 60)^{2}\right)=27.1\right\} \end{aligned}$	M1 DM1 A1 A1 A1 [5]	Diagram for vector addition/subtraction Uses Cosine Rule $\begin{aligned} & R^{2}=12^{2}+19^{2}- \\ & \quad 2 \times 12 \times 19 \cos 120 \\ & R=27.1 \end{aligned}$
ii	Trig on a valid triangle for correct angle $\tan \theta=(19 \sin 60) /(12+19 \cos 60)$ etc Angle is $37.4^{\circ}, 37.5^{\circ}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	Either Pythagoras or vector add/sub triangle $\sin \theta / 19=\sin 120 /(27.1)$ etc
$3 i a$ ib	$\begin{aligned} & +/-(9 \mathrm{~m}+2 \times 0.8) \quad\{+/-(3.5 \times 0.8-2 \times 0.8)\} \\ & +/-(-3.5 \mathrm{~m}+3.5 \times 0.8) \quad\{+/-(9 \mathrm{~m}+3.5 \mathrm{~m})\} \\ & +/-(9 \mathrm{~m}+2 \times 0.8)=+/-(-3.5 \mathrm{~m}+3.5 \times 0.8) \\ & \mathrm{m}=0.096 \mathrm{~kg} \end{aligned}$	B1 B1 M1 A1 [4] M1 A1ft [2]	Before mom, or mom change Q , OK with g After mom, or mom change P , OK with g Equates moms, or changes, accept with g Do not award if g used Using before \& after speeds of P or Q , no g ft $12.5 \times \operatorname{cv}(0.096)$
ii	$\begin{aligned} & (0.8+0.4) \mathrm{v} \text { or } 0.8 \mathrm{v}+0.4 \mathrm{v} \\ & 3.5 \times 0.8+0.4 \times 2.75=(0.8+0.4) \mathrm{v} \\ & \mathrm{v}=3.25 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	Using Q and R common speed after, no g $2.8+1.1=1.2 \mathrm{v}$
4ia	$0.3 g \cos 60$ and $0.3 g \sin 60$ $0.4 g \cos 60$ and $0.4 \mathrm{~g} \sin 60$ Calculates either relevant difference Perp $=0.1 \mathrm{gcos} 60$ and Para $=+/-0.1 \mathrm{gsin} 60$ $\begin{gathered} 0.1 \mathrm{gsin} 60=\mu 0.1 \mathrm{~g} \cos 60 \\ =1.73(=\sqrt{ } 3) \end{gathered}$	B1 B1 M1 A1 [4] M1 A1 [2]	Accept use of "m = 0.1 kg " for M1 and 0.1 gcos 60 (B1) 0.1gsin60 (B1) $\begin{aligned} & =0.49 \text { and }=0.849 \text { (accept } 0.85 \text { and } 0.84) \\ & F=\mu R, F>R>0 \\ & \text { From correct } R, F \text { values } \end{aligned}$

4 ii	$\begin{aligned} & 0.5 \mathrm{~g}-\mathrm{T}=0.5 \mathrm{a} \\ & \mathrm{~T}-0.4 \mathrm{~g}=0.4 \mathrm{a} \\ & \mathrm{a}=1.09 \mathrm{~ms}^{-2} \\ & \mathrm{~T}=4.36 \mathrm{~N} \end{aligned}$	M1 A1 B1 B1 [4]	N2L for either particle no resolving, at least 1 unknown Formula round the pulley, M0A0. But award M1 for T- $0.4 \mathrm{~g}=0.4 \times 1.09$ etc later Both equations correct
5 i	$\begin{array}{ll} 11=3+20 a & (a=0.4) \\ 8=3+(11-3) t / 20 & \\ t=12.5 & \end{array}$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	Uses $\mathrm{v}=\mathrm{u}+\mathrm{at}$, no zero terms Their $\mathrm{a}>0$. $\mathrm{t} / 20=(8-3) /(11-3)$ is M1M1
ii	$\begin{aligned} & \mathrm{s}(\mathrm{~A}, 20)=8 \times 20(=160) \\ & \mathrm{s}(\mathrm{~B}, 20)=(3+11) \times 20 / 2= \\ & \quad 3 \times 20+0.4 \times 20^{2} / 2(=140) \\ & 8 \mathrm{~T}=(3+11) \times 20 / 2+11 \times(\mathrm{T}-20) \\ & \text { or }(160-140)=11 \mathrm{t}-8 \mathrm{t} \\ & \mathrm{~T}=262 / 3 \end{aligned}$	B1 B1 M1 A1 A1 [5]	$\operatorname{Or} s(A)=8 T$ or as stage of $s(B)=(3+11) \times 20 / 2+11 \times(T-20)$ 3 part equation balancing distances Accept 26.6 or 26.7
iii		$\begin{array}{\|c} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \hline \end{array}$	Linear rising graph (for A) starting at B's start Non-linear rising graph for B below A's initially. Accept 2 straight lines as non-linear. Single valued graphs graphs intersect and continue
6 i	$\begin{aligned} & a=2 \times 0.006 t-0.18 \\ & a=0.012 t-0.18 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ [2]	Differentiates v (not v/t) Award for unsimplified form, accept +c , not $+\mathrm{k}$
ii	$\begin{align*} & 0.012 \mathrm{t}-0.18=0 \\ & \mathrm{t}=15 \\ & \\ & 0.006 \times 15^{2}-0.18 \times 15+\mathrm{k}=0.65 \tag{AG}\\ & \mathrm{k}=2 \end{align*}$	$\begin{array}{\|l\|} \hline \text { M1* } \\ \text { A1 } \\ \text { D*M1 } \\ \text { A1 } \\ \text { A1 } \\ \hline \end{array}$	Sets $\mathrm{a}=0$, and solves for t Substitutes $\mathrm{t}(\mathrm{v}(\mathrm{min})$) in $\mathrm{v}(\mathrm{t})$
iii	$\begin{aligned} & \mathrm{s}=0.006 \mathrm{t}^{3} / 3-0.18 \mathrm{t}^{2} / 2+2 \mathrm{t}(+\mathrm{c}) \\ & \left(\mathrm{s}=0.002 \mathrm{t}^{3}-0.09 \mathrm{t}^{2}+2 \mathrm{t}(+\mathrm{c})\right) \\ & \mathrm{t}=0, \mathrm{~s}=0 \text { hence } \mathrm{C}=0 \\ & \mathrm{~L}=0.002 \times 28.4^{3}-0.09 \times 28.4^{2}+2 \times 28.4 \\ & \mathrm{~L}=30.0 \mathrm{~m} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ {[5]} \\ \hline \end{array}$	Integrates v (not multiplies by t). Award if +c omitted, accept kt Explicit, not implied (or uses limits 0, 28.4) Substitutes 28.4 or 14.2 in $s(t)$, (and $k=2$) Accept a r t 30(.0), accept +c

7 i	$\begin{aligned} & (\mathrm{Fr}=) 0.15 \times 600 \mathrm{gcos} 10 \\ & (\mathrm{Wt} \mathrm{cmpt}=) 600 \mathrm{gsin} 10 \\ & 600 \times 0.11=\mathrm{T}-0.15 \times 600 \mathrm{gcos} 10- \\ & (66=\mathrm{T}-868.6-1021) \\ & \mathrm{T}=1960 \mathrm{~N} \end{aligned}$	B1 B1 M1 A1 A1 [5]	Implied by $\mathrm{Fr}=0.15 \times 600 \mathrm{gcos} 10$ ($=868.6$. .) N2L. T with at least 1 resolved forces and 600×0.11 1955.6..
ii a	$\begin{aligned} & \mathrm{a}(\mathrm{up})=+/-(600 \mathrm{gsin} 10+.15 \times 600 \mathrm{gcos} 10) / 600 \\ & \mathrm{a}(\mathrm{up})=+/-3.15 \mathrm{~ms}^{-2} \text { AG } \end{aligned}$	M1 A1 [2]	2 resolved forces and 600a or "unit mass" Disregard sign, accept 3.149
b	$\begin{array}{ll} \text { UP } \quad \begin{array}{l} \mathrm{v}^{2} \\ \mathrm{v} \end{array}=2 \times 0.11 \times 10 \\ \mathrm{t} & =1.48 / 3.149 \\ \mathrm{t} \\ \mathrm{t} & =0.471 \text { time for log to come to rest }) \\ \mathrm{s} & =1.48^{2} /(2 \times 3.149) \\ \mathrm{s} & =0.349 \text { distance for log to come to } \\ \text { rest } \\ \text { DOWN } \\ \mathrm{a}(\mathrm{down})=(600 \mathrm{~g} \sin 10-0.15 \times 600 \mathrm{gcos} 10) / 600 \\ 10+0.349=0.254 \mathrm{t}^{2} / 2 \\ \mathrm{t} & =9.025 \\ \mathrm{~T} & =(9.025+0.471)=9.5 \mathrm{~s} \end{array}$	M1 A1 M1 M1 A1 B1 M1 A1 A1 [9]	Correct, need not be accurate Or $1.48=0+3.15 t$ Correct, need not be accurate $=0.254$ Needs $\mathrm{a}<3.15, \mathrm{~s}>10$. Or $\mathrm{V}^{2}=$ $2 \times 0.254 \times(10+0.349)[\mathrm{V}=2.29 . .], \mathrm{V}=0.254 \mathrm{t}$ Correct, need not be accurate Accept 9.49

1	$\begin{aligned} & \mathrm{t}=5 / 1.2 \\ & \mathrm{t}=4.17 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	$\begin{aligned} & 5=1.2 \mathrm{t} \text { or } 0=5-1.2 \mathrm{t} \\ & 41 / 6 \mathrm{~s}, 4.166 \text { or better, } 4.16 \text { recurring. } \end{aligned}$	
ii	$\begin{aligned} & \mathrm{s}=(-5)^{2} / 2 \mathrm{x} 1.2 \\ & \mathrm{~s}=10.4 \mathrm{~m} \\ & O R(u \operatorname{sing}(i)) \\ & \mathrm{s}=5 \times 4.17-1.2 \times 4.17^{2} / 2 \\ & \mathrm{~s}=10.4 \mathrm{~m} \\ & O R(u \operatorname{sing}(i)) \\ & \mathrm{s}=(5(+0)) / 2 \times 4.17 \\ & \mathrm{~s}=10.4 \mathrm{~m} \end{aligned}$	M1 A1 [2] M1 A1 M1 A1	$\mathrm{s}=5^{2} / 2 \times 1.2 \text { or } 5^{2}=2 \times 1.2 \mathrm{~s} \text { or } 0=5^{2}-2 \times 1.2 \mathrm{~s}$ Accept 10 5/12, but not 10 Time must be >0. Accept $\|t\|$ from (i) Award if \|-4.17	used.
iii	$\begin{aligned} & \mathrm{Fr}=3 \mathrm{x} 1.2 \\ & \mathrm{R}=3 \mathrm{x} 9.8 \\ & \mu=(3 \mathrm{x}) 1.2 /(3 \mathrm{x}) 9.8 \\ & \mu=0.122 \\ & O R \\ & \mathrm{R}=3 \mathrm{x} 9.8 \\ & \text { Mass x acceleration }=+/-3 \times 1.2 \\ & +/-\mu \mathrm{x} 29.4=+/-3 \mathrm{x} 1.2 \\ & \mu=0.122 \end{aligned}$	B1 B1 M1 A1 $[4]$ B1 B1 M1 A1	Accept 3.6, +/- Accept 3g, +/- Ratio of 2 positive numerical force terms Not 0.12 Accept 3g, +/- Either both positive or both negative.	

2	$\begin{aligned} & \hline+/-(0.4 \times 3-0.6 \times 1.5) \\ & +/-(0.4 \times 0.1+0.6 \mathrm{v}) \\ & (0.4 \times 3-0.6 \times 1.5)=+/-(0.4 \times 0.1+0.6 \mathrm{v}) \\ & \text { speed }\|\mathrm{v}\|=0.433 \mathrm{~ms}^{-1} \\ & O R \\ & +/-(0.4 \times 3-0.4 \times 0.1)=+/-1.16 \\ & (0.6 \mathrm{v}+0.6 \times 1.5)=0.6 \mathrm{v}+0.9 \\ & 1.16=+/-(0.6 \mathrm{v}+0.9) \\ & \text { speed }\|\mathrm{v}\|=0.433 \mathrm{~ms}^{-1} \\ & \hline \end{aligned}$	B1 B1 M1 A1 $[4]$ B1 B1 M1 A1	$+/-0.3$ Nb the terms have same signs Equating their total mom before \& after Accept $13 / 30$ or 0.43 recurring, but not 0.43 Momentum change of P Momentum change of Q Equating momentum changes $0.26 / 0.6=v$
ii	$\begin{aligned} & +/-(0.4 \times 0.1-0.6 \mathrm{v}) \\ & (0.4 \times 3-0.6 \times 1.5)=+/-(0.6 \mathrm{v}-0.4 \mathrm{x} 0.1) \\ & \mathrm{v}=0.567 \\ & \mathrm{PQ}=0.1 \mathrm{x} 3+0.567 \mathrm{x} 3 \\ & \mathrm{PQ}=2 \mathrm{~m} \\ & O R \\ & +/-0.4 \times 3+0.4 \times 0.1 \text { and }+/-0.6 \mathrm{v}+0.6 \times 1.5 \\ & 1.24=+/-0.6 \mathrm{v}+0.9 \\ & \mathrm{v}=0.567 \end{aligned}$ etc	B1 M1 A1 M1 A1 $[5]$ B1 M1 A1	Nb the terms have different signs Must use +/- same before momentum as in (i) May be implied, or in any format ($0.1+0.567$)x3 Accept 2.00(1), 2.0, 2.00 Both must be correct Equating change in momentum May be implied, or in any format

3	$\begin{aligned} & \mathrm{H}=+/-(9-5 \cos 60) \\ & \mathrm{H}=6.5 \mathrm{~N} \end{aligned}$	AG	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	+/-(9 + 5 $\cos 120)$
ii	$\begin{aligned} & \mathrm{V}=+/-(12-5 \sin 60) \\ & \mathrm{V}=7.67 \mathrm{~N} \end{aligned}$		$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \\ \hline \end{gathered}$	$+/-(12+5 \cos 150)$ Accept 7.666 or better, or 7.6 recurring
iii	$\begin{aligned} & \mathrm{R}^{2}=6.5^{2}+7.67^{2} \\ & \mathrm{R}=10.1 \mathrm{~N} \\ & \tan \mathrm{~A}=6.5 / 7.67 \text { or } 7.67 / 6.5 \\ & \mathrm{~A}=40(.3) \text { or } 49.7 \\ & \text { Bearing }=320^{\circ} \end{aligned}$		M1 A1 M1 A1 A1 [5]	Uses Pythagoras on forces V(ii) and 6.5 10.053.. Uses trigonometry in relevant triangle May be implied by final answer As this is not a final answer, exact accuracy is not an issue Or better

4	$\begin{aligned} & 3.2-0.2 t^{2}=0 \\ & t=4 \mathrm{~s} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	Puts 0 for v and attempts to solve QE Accept dual solution +/-4
ii	$\begin{aligned} & \mathrm{a}=-2 \mathrm{x} 0.2 \mathrm{t} \\ & \mathrm{a}=-0.4 \mathrm{x} 4 \\ & \mathrm{a}=-1.6 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { D*M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Differentiates v Substitutes +ve $t(i)$ in derivative of v Negative only
iii	$\begin{aligned} & \mathrm{s}=3.2 \mathrm{t}-0.2 \mathrm{t}^{3} / 3(+\mathrm{c}) \\ & \mathrm{t}=0, \mathrm{~s}=0 \mathrm{soc}=0 \\ & \mathrm{~s}(4)=3.2 \mathrm{x} 4-0.2 \times 4^{3} / 3 \\ & \mathrm{~s}=8.53 \mathrm{~m} \end{aligned}$	M1* A1 B1 D*M1 A1 [5]	Integrates v , not multiplication by t Or correct use of limits 0 and 4 Accept without/loss of c 8 8/15 Accept with/without c

$\begin{aligned} & 5 \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & +/-3 \times 20 / 2 \\ & 30 \mathrm{~m} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	Use area of scalene triangle(s). Not suvat. Accept -30
ii	$\begin{aligned} & (\mathrm{t}+4) \mathrm{x} 3 / 2=30 \text { or } 3 \mathrm{t} / 2=30-4 \mathrm{x} 3 \\ & \mathrm{t}=16 \text { or } \mathrm{t}=12 \\ & \mathrm{~T}=76 \end{aligned}$	M1 A1 A1 A1 [4]	Equates scalene trapezium area to distance (i) $[(T-60)+4] \times 3 / 2=30$, award A2
iii	$\begin{aligned} & \mathrm{T}(\mathrm{accn})=3 / 0.4 \quad(=7.5 \mathrm{~s}) \\ & \operatorname{decn}=3 /([76-60]-4-7.5) \\ & \operatorname{decn}=(+/-) 2 / 3 \mathrm{~ms}^{-2} \\ & O R \\ & \mathrm{~S}(\mathrm{accn})=3^{2} /(2 \times 0.4) \quad(=11.25 \mathrm{~m}) \\ & \operatorname{decn}=3^{2} /[2 \mathrm{x}(30-3 \times 4-11.25)] \\ & \operatorname{decn}=(+/-) 2 / 3 \mathrm{~ms}^{-2} \end{aligned}$	B1 M1 A1 [3] B1 M1 A1	Or 3 = decn x ([76-60] - 4-7.5) (+/-) 0.667 or better - accept 0.6 recurring (+/-) 0.667 or better - accept 0.6 recurring

6	$\mathrm{T}-0.85 \mathrm{~g} \sin 30=0.85 \mathrm{a}$	B1	Either equation correct
i	$0.55 \mathrm{~g}-\mathrm{T}=0.55 \mathrm{a}$	B1	Both eqns correct and consistent 'a' direction
a	$\mathrm{a}=1.225 / 1.4$	M1	Solves 2 sim eqn
	$\mathrm{a}=0.875$	A1	
	$\mathrm{T}=4.91$	$\begin{aligned} & \mathrm{A} 1 \\ & {[5]} \end{aligned}$	4.908 or better - has to be positive
b	$\mathrm{F}=2 \mathrm{Tcos} 30$	M1	Or Pythagoras or cosine rule
	$\mathrm{F}=8.5$ (02..)	A1ft [2]	$\mathrm{cv}(4.91) \mathrm{x} \sqrt{ } 3$
ii		M1	Uses $\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{a}(1.5)$, u non-zero, a from (i)
	$\mathrm{v}^{2}=1.3^{2}+2 \times 0.875 \times 1.5(=4.315)$	A1ft	$\mathrm{v}=2.077 \ldots . .\left(v^{2}=1.69+3 \mathrm{xcv}(0.875)\right)$
	$\mathrm{a}=+/$-gsin 30	B1	$\mathrm{a}=+/-4.9$
	$0=4.315-2 \mathrm{x} 4.9 \mathrm{~s}$	M1	Uses $0^{2}=u^{2}+/-2$ as, with a not g or (i), u not1.3
	($\mathrm{s}=0.44 \ldots$)	A1	May be implied - need not be 3sf
	$\mathrm{S}=1.94$	A1 [6]	

7	$\begin{aligned} & \mathrm{Fr}=4+5 \sin 60 \\ & \mathrm{Fr}=8.33 \\ & \mathrm{R}=12-5 \cos 60 \\ & \mathrm{R}=9.5 \\ & \mu=(4+5 \sin 60) /(12-5 \cos 60) \\ & \mu=0.877 \end{aligned}$	M1 A1 M1 A1 M1 A1 [6]	All 4 + component 5 (4 + 4.333(01)) May be implied +/-(All 12 - component 5 (12-2.5)) May be implied, +ve from correct work Friction/Reaction, $\mathrm{Fr}>4, \mathrm{R}<12$, both positive
ii	$\begin{aligned} & \text { Upper block } \\ & \mu=5 \sin 60 /(9-5 \cos 60) \quad(=4.3 / 6.5) \\ & \mu=0.666 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ -\quad[2] \end{gathered}$	(Component 5)/(9-component 5)
iii	Upper mass $=9 / \mathrm{g}$ $(9 / \mathrm{g}) \mathrm{a}=5 \sin 60-0.1(9-5 \cos 60)$ $\mathrm{a}=4.01$ Lower mass Tractive force $=4+0.1(9-5 \cos 60)(=4.65)$ Max Friction $=0.877(3+(9-5 \cos 60)(=8.33)$ Tractive force < Max Friction $\mathrm{a}=0$ OR for Lower Mass $\mathrm{ma}=4+0.1(9-5 \cos 60)-0.877(3+9-5 \cos 60)$ -ve a caused by friction impossible, hence $\mathrm{a}=0$	B1 M1 A1 M1 A1 A1 [6] M1 A1 A1	0.918(36..) N2L 0.918(36..)a= 4.33(01..) - 0.1x6.5 where friction $=0.1 \mathrm{x}(9$-component 5$)$ Compares TF (tractive force) and max friction N2L with 3 force terms:

1	Δ Mom P = 0.5(2.4 + 0.2) $\Delta \mathrm{Mom} \mathrm{P}=+/-1.3 \mathrm{kgms}^{-1}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	+/- 0.5(2.4 $\pm 0.2)$	MR P/Q +/-0.8(1.5+/-0.2) M1A0
ii	$\begin{aligned} & \text { Momentum before }=0.5 \times 2.4-0.8 \times 1.5 \\ & 0.5 \times 2.4+/-0.8 \times 1.5=+/-(-0.5 \times 0.2+/-0.8 \mathrm{v}) \\ & \text { Speed }=0.125 \mathrm{~ms}^{-1} \\ & \text { OR } \\ & \Delta \text { Mom Q }=+/-(+/-0.8 \mathrm{v}-0.8 \times 1.5) \\ & \\ & 1.3=+/-(0.8 \mathrm{v}-0.8 \times 1.5) \\ & \text { Speed }=0.125 \mathrm{~ms}^{-1} \end{aligned}$	B1 M1 A1ft A1 [4] B1 M1 A1ft A1	$+/-(0.5 \times 2.4-0.8 \times 1.5)$ Uses mom before $=$ mom after Cv (Expression for before momentum) $1 / 8$, +ve (not 0.13) Uses \triangle Mom $\mathrm{P}=\Delta$ Mom Q $\operatorname{Cv}(\operatorname{ans}(\mathrm{i}))=+/-(+/-0.8 \mathrm{v}-0.8 \times 1.5)$ $1 / 8$, +ve (not 0.13)	Cont MR 0.5×2.4-0.8×1.5 Uses mom before $=$ mom after $0.5 \times 2.4+/-0.8 \times 1.5=+/-(0.8 \times 0.2+/-0.5 \mathrm{v})$ 0.32 B1 M1A1A1 ft

2	$\begin{aligned} & 10 \operatorname{CorS} \alpha=8 \\ & 10 \cos \alpha=8 \\ & \alpha=36.9^{\circ} \\ & \text { OR } \\ & 10 \operatorname{CorS} \alpha=\mathrm{F} \\ & 10 \sin \alpha=6 \\ & \alpha=36.9^{\circ} \\ & \text { OR } \\ & \tan \theta=\mathrm{F} / 8 \\ & \tan \alpha=6 / 8 \\ & \alpha=36.9^{\circ} \end{aligned}$	M1 A1 A1 [3] M1 A1ft A1 M1 A1ft A1	Component of $10=8$ Accept 3736.8 and 37 from 36.7 Using value of F (ii) Using $F(=6)$ from (ii) OR $\tan \theta=8 / F$, using value of F from (ii)	CorS is Cos or Sin (passim) Do not accept 36.7
ii	$\begin{aligned} & F=10 \sin 36.9 \\ & F=6 N \end{aligned}$ OR $\begin{aligned} & \mathrm{F}^{2}+8^{2}=10^{2} \\ & \mathrm{~F}=6 \mathrm{~N} \end{aligned}$	M1 A1ft A1 [3] M1 A1 A1	$\mathrm{F}=10 \mathrm{CorS} \alpha$ Allow 10Cos53.1 Accept 6.01 (or from 10Cos53.1) or 6.0 Pythagoras, 3 squared terms	anything rounding to 6.0 from correct working. Accept $F^{2}=8^{2}+10^{2}$

$\begin{array}{\|l\|} \hline 3 \\ \mathrm{i} \end{array}$	$\mathrm{v}^{2}=(+/-5)^{2}+2 \times 9.8 \times 2.5$ Speed (or v) $=8.6(0) \mathrm{ms}^{-1}$ OR $\begin{aligned} & 0=5^{2}-2 \times 9.8 x s \text { with } \mathrm{v}^{2}=(0)+2 \times 9.8(\mathrm{~s}+2.5) \\ & \mathrm{v}^{2}=2 \times 9.8 \mathrm{x}(2.5+1.28) \\ & \text { Speed }=8.6(0) \mathrm{ms}^{-1} \end{aligned}$	M1 A1 A1 [3] M1 A1 A1	Uses $\mathrm{v}^{2}=\mathrm{u}^{2} \pm 2 \mathrm{gs}$, u non-zero Accept $\sqrt{ } 74$ Do not accept -8.6(0) $\begin{aligned} & s=1.2755 \ldots \\ & 19.8 \times 3.7755 . . \end{aligned}$ Or rounds to 8.6	It is common to see the upwards and downwards motion treated separately. Both parts must be attempted for M1, and both parts must be attempted accurately with cvs for the A1
ii	$8.6=-5+9.8 t$ Time $=1.39 \mathrm{~s}$ OR $9.8 t^{2}-10 \mathrm{t}-5=0$ Time $=1.39 \mathrm{~s}$ OR $2.5=(8.6-5) \mathrm{t} / 2$ Time $=1.39 \mathrm{~s}$ OR $t=5 / 9.8+8.6 / 9.8$ Time $=1.39$	M1 A1ft A1 [3] M1 A1 A1 M1 A1ft A1 M1 A1ft A1	Uses v(from (i)) = +/-5 +/- 9.8t $\mathrm{Cv}(8.60$ from (i)) $+/-2.5=5 \mathrm{t}+/-\mathrm{gt}^{2} / 2$ $2.5=+/-(5-$ Speed from (i)) x t $/ 2$ $\mathrm{Cv}(8.60$ from (i)) Times to top and ground found and added $\mathrm{Cv}(8.60$ from (i))	It is common to see the upwards and downwards motion treated separately. Both parts must be attempted for M1, and both parts must be attempted accurately with cvs for the A1
iii a) b)		B1 B1 B1 B1 [4]	Straight descending line to taxis Continues straight below t axis Inverted "parabolic" curve, starts anywhere on $t=0$ Ends below $\mathrm{t}=0$ level, need not be below t axis	Ignore values written on diagrams

4	$\begin{aligned} & \hline 2-\mathrm{F}=0.8 \mathrm{x} 0.2 \\ & \mathrm{~F}=\mathrm{T} \cos 10 \\ & \mathrm{~T}=1.87 \mathrm{~N} \\ & \mathrm{OR} \\ & \\ & 2-\mathrm{T} \cos 10=0.8 \times 0.2 \\ & \mathrm{~T}=1.87 \mathrm{~N} \\ & \hline \end{aligned}$	M1 M1 A1 [3] M1 M1 A1	N2L 2 force terms and ma ($\mathrm{F}=1.84 \mathrm{~N}$) F = TCorS10 1.8683.. N2L 2 force terms and ma TCorS10	m is the block mass, award if T not F
ii	$\begin{aligned} & \mathrm{R}-0.3 \times 9.8+\mathrm{TCorS} 10=0 \\ & \mathrm{R}=0.3 \times 9.8-1.87 \sin 10 \\ & \mathrm{R}=2.62 \\ & \mathrm{~T} \cos 10-\mathrm{Fr}=0.3 \times 0.2 \\ & \mathrm{Fr}=1.78 \\ & \mu=1.78 / 2.62 \text { OR } 1.78=2.62 \mu \\ & \mu=0.68 \end{aligned}$	M1 A1ft A1ft M1 A1ft M1 A1 [7]	3 term equation, vertically $\operatorname{cv}(\mathrm{T}(\mathrm{i}))$ 2.61(5..) seen or implied N2L 2 forces for P, component of T $\mathrm{cv}(\mathrm{T}(\mathrm{i})$) seen or implied both terms same sign	Treat as a mis-read R-0.8x9.8-TCorS10 $=0$ leading to $\mathrm{R}=8.16$ (i.e.works on block[2/3] OR N2L 2 forces for $\mathrm{P}+\mathrm{Q}$: $2-\mathrm{Fr}=(0.8+0.3) \times 0.2$ R, Fr unequal to T From correct value of $\mathrm{T}=1.87$ only

5ia		M1	$\mathrm{s}=\mathrm{ut}+0.5 \mathrm{at}{ }^{2}$ used along plane or vertically, with	$\operatorname{Sin} \theta=\left(0.5 \mathrm{x} 9.8 \mathrm{~T}^{2}\right) /\left(4.9 \mathrm{~T}+0.5 \mathrm{x} 4.9 \mathrm{~T}^{2}\right)$ gets M1, but in ic. Beware circular argument.
	$s(P)=4.9 \mathrm{~T}+0.5 \mathrm{x} 4.9 \mathrm{~T}^{2}$	A1	$\mathrm{u}=4.9$ or 0 , and $\mathrm{a}=4.9$ or 9.8 appropriately	
	$\mathrm{y}(\mathrm{Q})=(0)+0.5 \mathrm{x} 9.8 \mathrm{~T}^{2}$	A1 [3]	Accept use of t or T Allow g in $Y(Q)$	
b	$(\mathrm{m}) \times 4.9=(\mathrm{m}) \mathrm{g} \sin \theta$	M1*	Allow CorSe	
	$\theta=30$	A1 [2]		
c	$\begin{aligned} & \mathrm{y}(\mathrm{Q}) / \mathrm{s}(\mathrm{P})=\sin \theta \quad \mathrm{OR} \quad \mathrm{y}(\mathrm{Q})=\mathrm{s}(\mathrm{P}) \sin \theta \\ & 0.5 \times 9.8(2 / 3)^{2} /\left(4.9 \times 2 / 3+2.45(2 / 3)^{2}=0.5\right. \end{aligned}$	M1	Uses appropriate trigonometry to relate distances Verification needs explicit value of $\sin (\operatorname{cv}(\theta i b))$	$\begin{aligned} & 0.5 \times 9.8(2 / 3)^{2}=\left(4.9 \times 2 / 3+2.45(2 / 3)^{2} \times 0.5\right. \\ & \text { OR } \quad 0.5 \times 9.8 \mathrm{~T}^{2}=\left(4.9 \mathrm{~T}+2.45 \mathrm{~T}^{2}\right) \times \sin 30 \end{aligned}$
	$\begin{array}{ll} \mathrm{OR} \quad 0.5 \times 9.8 \mathrm{~T}^{2} /\left(4.9 \mathrm{~T}+2.45 \mathrm{~T}^{2}\right)=\sin 30 \\ \mathrm{~T}=2 / 3 \mathrm{~s} \end{array}$	$\begin{gathered} \mathrm{D}^{*} \mathrm{M} 1 \\ \mathrm{~A} 1 \\ {[3]} \end{gathered}$	Ratio of distances considered using cv (30)	
ii	$\begin{aligned} & \mathrm{v}=4.9+4.9 \times 2 / 3 \mathrm{OR} \mathrm{v}=(0)+9.8 \times 2 / 3 \\ & \mathrm{v}=8.17 \mathrm{~ms}^{-1} \\ & \mathrm{w}=9.8 \times 2 / 3=6.53 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 A1 [3]	Uses $\mathrm{v}=\mathrm{u}+$ at, with appropriate u , a values once 8.2 6.5	

$\begin{aligned} & 6 \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{x}=\int \mathrm{t}^{2}-9 \mathrm{dt} \\ & \mathrm{x}=\mathrm{t}^{3} / 3-9 \mathrm{t}(+\mathrm{c}) \end{aligned}$ Finds $x(2)$ Displacement $=151 / 3 \mathrm{~m}$ OR $x(2)=\left[t^{3} / 3-9 t\right]_{0}^{2}$ Displacement $=151 / 3 \mathrm{~m}$	$\begin{aligned} & \hline \text { M1* } \\ & \text { A1 } \\ & \text { D*M1 } \\ & \text { B1 } \\ & \quad[4] \\ & D^{*} \text { M1 } \\ & \text { B1 } \end{aligned}$	Uses integration of $\mathrm{v}(\mathrm{t})$ Award if +c omitted Allow + c or c omitted Accept 15.3, 46/3. Must be +ve Uses limits[] ${ }_{0}^{2}$ on integrated $\mathrm{x}(\mathrm{t})$ Must be +ve	Awarded if c omitted or assumed 0
ii	$t=0 \mathrm{~s}=0$ or $\mathrm{s}=46 / 3$ hence $\mathrm{x}(0)$ or $\mathrm{c}=0$ or $46 / 3$ Solves $\mathrm{t}^{2}-9=0$ $\begin{aligned} & \mathrm{t}=(\pm) 3 \\ & \mathrm{x}(3)=3^{3} / 3-9 \times 3(+15.3) \\ & \mathrm{x}(3)=-18 \text { (or }-2.67) \\ & \text { Dist }=18 \mathrm{~m} \end{aligned}$	B1* M1* A1 D*M1 M1 D*B1 $\quad[6]$	Needs explanation, may be seen in part i May be implied Value of t when direction of motion changes Substitutes $\mathrm{cv}(\mathrm{t})>2$ in integrated $\mathrm{x}(\mathrm{t})$ Evaluates c - 18 may be implied award if .. Accept 18(.0) [$\mathrm{c}=0$ assumed]	B1* awarded if limits 0 and 3 used correctly Awarded if limits used correctly
iii	$\begin{aligned} & a=d\left(t^{2}-9\right) / d t \\ & a=2 t \\ & 10=2 t \\ & t=5 \\ & x(5)\left(=5^{3} / 3-9 x 5+15.3\right)=12 \mathrm{~m} \end{aligned}$ OR $\left[\mathrm{t}^{3} / 3-9 \mathrm{t}\right]_{2}{ }^{5}=12 \mathrm{~m}$	M1* A1 D*M1 A1 A1 $\quad[5]$ A1	Uses differentiation of $\mathrm{v}(\mathrm{t})$	

$\begin{array}{\|l\|} \hline 7 \\ \mathrm{i} \end{array}$	$\begin{aligned} & \text { Wt cmpts: // plane } \begin{array}{r} 0.6 \mathrm{gsin} 30 \\ \quad \text { Perp plane } 0.6 g \cos 30 \end{array} \\ & 0.6 \mathrm{gsin} 30+/-\mathrm{X}=0.6 \times 10 \\ & \mathrm{X}=+/-3.06 \\ & \mu=3.06 / 5.09(22 . .) \\ & \mu=0.601 \\ & \text { OR } \\ & 3.06=\mu \times 5.09(22 . .) \\ & \mu=0.601 \end{aligned}$	B1 B1 M1 A1ft A1 M1 A1 $\quad[7]$ M1 A1	$\begin{aligned} & +/-2.94 \\ & +/-5.09(22 .)=\mathrm{R} \end{aligned}$ N2L // plane, 2 force terms and ma (allow no g) Both weight cmpt and accn signs same May be implied ($\mathrm{Fr}=0.6 \times 10-0.6 \mathrm{gsin} 30$ used) Uses $\mu=\mathrm{Fr} / \mathrm{R}$ both terms same sign 0.6 Uses $\mathrm{Fr}=\mu \mathrm{R}$ both terms same sign 0.6	Accept Fr for X Accept Fr $=\|\mathrm{X}\|$ Accept $\mathrm{Fr}=\|\mathrm{X}\|$
ii a)	$\begin{aligned} & \mathrm{C}^{2}=3.06^{2}+5.09^{2} \\ & \mathrm{C}=5.94 \mathrm{~N} \\ & \tan \theta=3.06 / 5.09(22 . .) \\ & \text { Angle }=(31)+90 \\ & \text { Angle }=121^{\circ} \\ & \mathrm{OR} \\ & \tan \varphi=5.09(22 . .) / 3.06 \\ & \text { Angle }=180-(59) \\ & \text { Angle }=121^{\circ} \end{aligned}$	M1 A1 M1* D*M1 A1 [5] M1* D*M1 A1	Pythagoras with Fr and R, to find hypotenuse Accept 5.9, 5.95 but not 6(.0) Or $\tan \theta=\mu$ Not 120 $\tan \varphi=1 / \mu$ Not 120	
b)	$\begin{aligned} & C(=0.6 \times 9.8)=5.88 \mathrm{~N} \\ & \text { Angle }=60^{\circ} \end{aligned}$	B1 B1 [2]		No working needed as C is vertical No working needed as C is vertical

Question			Expected Answer	Mark	Rationale/Additional Guidance
1			$\begin{aligned} & \mathrm{R}^{2}=8^{2}+15^{2} \\ & \mathrm{R}=17 \mathrm{~N} \\ & \cos \theta=15 / 17 \\ & \theta=28.1^{\circ} \end{aligned}$	M1 A1 M1 A1 [4]	Uses Pythagoras 3 squared terms, addition Uses trig appropriately and targets either angle Accept $28^{\circ}, 0.49 \mathrm{rad}$
2	i	Also if in ii	$\begin{aligned} & \mathrm{T}-0.45 \mathrm{~g}=0.45 \times 0.98 \\ & \mathrm{~T}=4.85(1) \mathrm{N} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	N2L on 0.45 kg , weight - tension and +/-0.98m Not 4.9, 4.8 (4.851 is exact, but 4.85 acceptable) $\{\mathrm{g}=9.81 \rightarrow \mathrm{~T}=4.85$ or 4.86 or better\}
	ii	Also If in i	$\begin{aligned} & \mathrm{mg}-4.85(1)=0.98 \mathrm{~m} \\ & \mathrm{~m}=4.85(1) /(9.8-0.98) \text { or } \mathrm{m}(\mathrm{~g}-0.98)=4.85(1) \\ & \mathrm{m}=0.55 \\ & O R \\ & 0.98=\mathrm{g}(\mathrm{~m}-0.45) /(\mathrm{m}+0.45) \\ & \mathrm{m}=(\mathrm{g}+0.98) /(\mathrm{g}-0.98) \times 0.45 \\ & \mathrm{~m}=0.55 \end{aligned}$	M1 A1ft A1 [3] M1 A1 A1	$\begin{aligned} & \text { N2L on Q, weight - tension, tension=T(i), and } 0.98 \mathrm{~m} \\ & \text { Simplified to a single term in } \mathrm{m}, \mathrm{ft} \operatorname{cv}(\mathrm{~T}(\mathrm{i})) \\ & \text { art } 0.550 \\ & \{\mathrm{~g}=9.81 \rightarrow \mathrm{~m}=0.55(0) \text { or better }\} \\ & \mathrm{a}=\mathrm{g} \times \Delta(\text { masses }) / \Sigma(\text { masses }) \end{aligned}$
	iii		$\begin{aligned} & v^{2}=(0+) 2 \times 0.98 \times 0.36 \\ & v=0.84 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$ [2]	Uses $\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}, \mathrm{a}$ not $9.8,2 \mathrm{as}>0, \mathrm{u}=0$ or omitted
	iv		$\begin{array}{\|l\|} \hline 0=0.84^{2}-2 \times 9.8 \mathrm{~s} \\ (\mathrm{~s}=0.036) \\ \mathrm{S}=0.036+2 \times 0.36=0.756 \mathrm{~m} \end{array}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	$0=(\mathrm{cv}(\mathrm{iii}))^{2}-2 \mathrm{gs} \text {, or } \mathrm{t}=\mathrm{cv}(\mathrm{iii}) / \mathrm{g} \text { and } \mathrm{s}=\mathrm{ut}+/-\mathrm{gt}^{2} / 2$ May be implied by final answer (eg 0.396) Must be 3 sf (exact) $\{\mathrm{g}=9.81 \rightarrow \mathrm{~s}=0.756 \text { or better }\}$

			Frequent mis-read "horizontal/vertical" MR version in $\}$		Allow all A1 marks in (i) and (ii) except final A1 in (ii).
3	i		$\begin{array}{ll} \mathrm{R}=0.8 \mathrm{~g}-6 \cos 60 & \{\mathrm{R}=0.8 \mathrm{~g}-6 \sin 60\} \\ \mathrm{R}=4.84 & \{\mathrm{R}=2.64\} \end{array}$	M1 A1 [2]	Resolves vertically, ($\mathrm{R}=$) difference of 2 forces inc. component of 6 Accept $4.8 \quad\{2.6\}$ $\{g=9.81 \rightarrow \mathrm{R}=4.848 \quad\{2.65\}$; accept $4.8\{2.6$ or 2.7$\}\}$
	ii		$\begin{array}{ll} \text { Fr }=0.2 \times 4.84(=0.968) & \{\mathrm{Fr}=0.2 \times 2.64 . .(=0.5287 . .)\} \\ & \\ 6 \sin 60-0.968=0.8 \mathrm{a} & \{6 \cos 60-0.5287 . .=0.8 \mathrm{a}\} \\ \mathrm{a}=5.29 \mathrm{~ms}^{-2} \quad & \left\{\mathrm{a}=3.09 \mathrm{~ms}^{-2} \quad \text { AO }\right\} \end{array}$	M1 M1 A1 A1 [4]	Uses $\mathrm{F}=0.2(\mathrm{cv}(\mathrm{i}))$ or $\mathrm{F}=0.2 \times$ (R found in (ii) by a method which would be given M1 in (i)) Uses N2L, 3 terms inc. component of 6 Fr need not be evaluated Accept 5.3 $\{g=9.81 \rightarrow a=5.28\{3.09 \mathrm{~A} 0\}$ Accept $5.3\{3.1 \mathrm{~A} 0\}$
	iii		$\begin{aligned} & \mathrm{Fr}=0.2 \times 0.8 \times 9.8(=1.568) \\ & 0.8 \mathrm{a}=-0.2 \times 0.8 \times 9.8 \\ & 0=4.9-1.96 \mathrm{t} \\ & \mathrm{t}=2.5 \mathrm{~s} \end{aligned}$	B1 M1* D*M1 A1 [4]	Uses $\mathrm{Fr}=0.2 \times 0.8 \mathrm{~g}$ N2L, Fr only, accept use of Fr from (ii) Accept $0.8 \mathrm{a}=0.2 \times 0.8 \times 9.8$, $(\mathrm{a}=(-) 1.96)$ Accept 4.9/1.96, not $0=4.9+1.96 \mathrm{t}$ Accept art 2.50 $\{\mathrm{g}=9.81 \rightarrow \mathrm{t}=2.50$ Accept art 2.50$\}$
4	i		$\begin{aligned} & \mathrm{a}=15 / 6 \text { or } \mathrm{d}=15 / 2 \\ & \mathrm{a}=2.5 \mathrm{~ms}^{-2} \\ & \mathrm{~d}=7.5 \mathrm{~ms}^{-2} \end{aligned}$	M1 A1 A1 [3]	Uses a = speed change/time Accept -7.5
	ii		$\begin{aligned} & \mathrm{T}=6+11+2(=19) \\ & \mathrm{x}=15(11+19) / 2 \text { or } 15 \times 6 / 2+15 \times 11+15 \times 2 / 2 \\ & \mathrm{x}=225 \mathrm{~m} \end{aligned}$	M1 M1 A1 [3]	Accounts for totality of car journey (may be implied) Idea area = distance SR Accept 15x(13+17)/2 M1M1
	iii		$\begin{aligned} & \text { Walks }=20 \times(-) 2=(-) 40 \mathrm{~m} \\ & \text { Jogs }=40 / 5=8 \mathrm{~s} \\ & \mathrm{~T}_{\mathrm{s}}=60-(\{6+11+2\}+20+8) \\ & \mathrm{T}_{\mathrm{s}}=13 \mathrm{~s} \end{aligned}$	M1 A1 M1 A1 [4]	Finds distance walked $T_{s}+(\{6+11+2\}+20+8)=60$, needs all time elements

5	i	i	$\begin{aligned} & V_{P}=3-2.5 \times 0.4(=2) \\ & V_{Q}=2.5 \times 0.4(=1) \\ & +/-(0.5 \times 2-0.2 \times 1)(=+/-0.8) \\ & 0.5 \times 2-0.2 \times 1=0.5 \mathrm{v}+0.2 \times 3.2 \\ & (v=0.32) 0.32 \mathrm{~ms}^{-1} \text { up } \end{aligned}$	M1 A1 B1 M1 A1 $[5]$	Calculation of either speed, either directions, $\|\mathrm{a}\|=2.5$ Both magnitudes correct (disregard signs) Momentum before Uses conservation of momentum in collision (not both $\mathrm{v}_{\mathrm{P}}=3$ and $\mathrm{v}_{\mathrm{Q}}=0$) Accept "same", value positive
		ii	$\begin{aligned} & V_{\mathrm{Q}}=3.2-2.5 \times 0.6(=1.7) \\ & \mathrm{V}_{\mathrm{R}}=2.5 \times(0.4+0.6)(=2.5) \\ & 0.2 \times 1.7-0.3 \times 2.5=(0.2+0.3) \mathrm{v} \\ & (\mathrm{v}=-0.82) 0.82 \mathrm{~ms}^{-1} \text { down } \end{aligned}$	M1 A1 M1 A1ft A1 [5]	Calculation of either speed with its correct time, $\|\mathrm{a}\|=2.5$ Both magnitudes correct (disregard signs) Uses momentum conservation in collision (not both $\mathrm{v}_{\mathrm{Q}}=3.2$ and $\mathrm{v}_{\mathrm{R}}=0$) LHS different signs, RHS same signs, ft cv (speeds Q, R) Value positive
6	i	i	"...smooth ring...", "..no friction at ring.."	B1 [1]	If a variety of reasons is offered, "smooth ring" must be the last
		ii	$\begin{align*} & T \cos \theta+5=T \cos (90-\theta) \\ & T \cos \theta+5=T \sin \theta \quad \ldots . \tag{a}\\ & T \sin \theta+T \operatorname{Tin}(90-\theta)=7 \\ & T \sin \theta+T \cos \theta=7 \quad \ldots . \tag{b} \end{align*}$	$\begin{array}{\|c\|} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \\ \hline \end{array}$	"Resolves horiz" equation, needs TCorS θ, 3 terms, 2 of which are T resolved "Resolves vert" equation, needs TCorS θ, 3 terms, 2 of which are T resolved \{Allow candidates solving for (iii) to begin in (ii)\}
		iii	$\begin{aligned} & \text { uses }(\mathrm{b})+(\mathrm{a}) \text { and }(\mathrm{b})-(\mathrm{a}) \\ & \mathrm{T} \sin \theta=6 \text { or } 2 \mathrm{~T} \sin \theta=12, \mathrm{~T} \cos \theta=1 \text { or } 2 \mathrm{~T} \cos \theta=2 \\ & \mathrm{~T}^{2}=6^{2}+1^{(2)} \\ & \mathrm{T}=6.08 \mathrm{~N} \\ & \text { Tan } \theta=6(/ 1) \\ & \theta=80.5^{\circ} \\ & O R \\ & \text { (b) gives } \mathrm{T}=7 /(\sin \theta+\cos \theta) \text {, subs in (a) for example } \\ & \text { 12cos }=2 \sin \theta \\ & \text { then mark as 6(iii) below for } \mathrm{D}^{*} \mathrm{M} 1 \mathrm{~A} 1 \mathrm{D}^{\star} \mathrm{M} 1 \mathrm{~A} 1 \\ & \hline \end{aligned}$	M1* A1 D*M1 A1 D*M1 A1 [6] M1* A1	Attempts to solve 2 equations in 2 unknowns Both terms have values correct Accept $\sqrt{3} 3,6.1$ Uses a correct trig identity Accept 81°, $1.4 \mathrm{rad}, 1.41 \mathrm{rad}$ Attempts to solve 2 equations in 2 unknowns Correct two term equation in one variable

7	i		$\begin{aligned} & \mathrm{v}=\mathrm{dx} / \mathrm{dt} \\ & \mathrm{v}=0.3 \mathrm{t}^{2}-0.6 \mathrm{t}+0.2 \\ & \mathrm{a}=\mathrm{dv} / \mathrm{dt} \\ & \mathrm{a}=0.6 \mathrm{t}-0.6 \end{aligned}$	M1 A1 M1 A1ft [4]	Uses differentiation of x Uses differentiation of v Correct differentiation of candidate's $\mathrm{v}(\mathrm{t})$
	ii		$\begin{aligned} & 0.6 \mathrm{t}-0.6=0(\mathrm{t}=1) \\ & \times(1)=0.1 \times 1^{3}-0.3 \times 1^{2}+0.2 \times 1 \quad \text { AG } \\ & \times(1)=0 \\ & O R \\ & 0.1 \mathrm{t}^{3}-0.3 \mathrm{t}^{2}+0.2 \mathrm{t}=0 \quad(\mathrm{t}=1, \text { and disregard others }) \\ & \mathrm{a}(1)=0.6 \times 1-0.6 \\ & \mathrm{a}(1)=0 \end{aligned}$	M1* D*M1 A1 [3]	Attempts to solve $\mathrm{a}=0$ Puts solution in x formula Attempts to solve $\mathrm{x}=0$ Puts solution in a formula
	iii		$\begin{aligned} & 0.3 t^{2}-0.6 t+0.2=0 \\ & t=0.423 \mathrm{~s} \\ & t=1.58 \mathrm{~s} \end{aligned}$	M1 A1 A1 [3]	Attempts to solve 3 term QE v = 0, accept imperfect attempt at formula, completing square or factorisation Accept 1-1/ $\sqrt{3}, 0.42,0.422$, or better Accept $1+1 / \sqrt{ } 3,1.6,1.57$, or better
	iv		$\begin{aligned} & \mathrm{x}=\int 0.2 \mathrm{t}^{2}-0.4 \mathrm{dt} \\ & \mathrm{x}=0.2 \mathrm{t}^{3} / 3-0.4 \mathrm{t}(+\mathrm{k}) \\ & 0.11 \mathrm{t}^{3}-0.3 \mathrm{t}^{2}+0.2 \mathrm{t}=0.2 \mathrm{t}^{3} / 3-0.4 \mathrm{t}(+\mathrm{k}) \\ & \mathrm{t}^{3}-9 \mathrm{t}^{2}+18 \mathrm{t}=0 \\ & \mathrm{t}^{2}-9 \mathrm{t}+18=0 \\ & (\mathrm{t}-3)(\mathrm{t}-6)=0 \\ & \\ & \\ & \mathrm{~T}=3 \mathrm{~s} \end{aligned}$	M1* A1 D*M1 D*M1 A1 M1 A1 [7]	Uses integration, ignore omission of k $x=2 t^{3} / 30-4 / 10 t(+k)$, or coeff $t^{3} 0.067$ or better Equates expressions for distance 3 terms with different powers of t, no constant Explains T is non-zero, or explains division by t Tries to solve given quadratic, accept imperfect attempt at completing square, formula or factorisation, and chooses smaller positive root
			Total	[72]	

Continued

Question		Answer	Marks	Guidance
1	(i)	$\begin{aligned} & \text { Total momentum before }=0.3 \times 2.2+0.5 \times 0.8 \\ & \text { Mom P after }=0.3 \times 2.2 / 2 \\ & 0.3 \times 2.2+0.5 \times 0.8=0.3 \times 2.2 / 2+0.5 v \\ & v=1.46 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { [4] } \end{gathered}$	Allow inclusion of g 0.33 , accept 0.33 g and negative term Allow $0.33 g=0.5 g v-0.5 g \times 0.8 \mathrm{M} 1$ Allow from inclusion of g
1	(ii)	$\begin{aligned} & \mathrm{PQ}=3 \times 1.46-3 \times 2.2 / 2 \\ & \mathrm{PQ}=1.08 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	$3(1.46-2.2 / 2)$ Accept $3 \times 1.46-2.2 / 2$
2	(i)	$\begin{aligned} & 36=0+/-a 24^{2} / 2 \\ & a=+/-0.125 \mathrm{~ms}^{-2} \\ & \mathrm{OR} \\ & U= \pm 24 a \text { and } 0^{2}=(24 a)^{2} \pm 2 a 36 \\ & a= \pm 0.125 \mathrm{~ms}^{-2}= \pm \frac{1}{8} \mathrm{~ms}^{-2} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { [2] } \\ \text { M1 } \\ \\ \text { A1 } \end{gathered}$	$\begin{aligned} & s=v t-a t^{2} / 2=0^{+} /-a t^{2} / 2 \text { OR } s=u t^{+} /-a t^{2} / 2 \\ & 1 / 8 \end{aligned}$ Use both $0=u \pm 24 a$ and $0^{2}=u^{2} \pm 2 a 36$ $U=3 \mathrm{~ms}^{-1}$
2	(ii)	$\begin{aligned} & (180 / g) a=F r \\ & F r= \pm 2.3(0) \mathrm{N} \\ & \mu=2.3 / 180 \\ & \mu=0.0128 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	Mass $=18.367 .$. kg. Regard $180 a=F r$ as MR May be implied. $\mathrm{Fr}=22.5 \mathrm{MR}-1$ $F r$ and R both +ve or both -ve, $\mu=22.5 /(180 \times 9.8)$ if MR Award if MR
3	(i)	$\begin{aligned} & v= \pm \int-8+0.6 t \mathrm{~d} t \\ & v=+-\left(-8 t+0.6 t^{2} / 2\right) \quad(+c) \\ & v=32.5-8 t+0.3 t^{2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	Integrates accn or decn (Although only $v=-8 t+0.6 t^{2} / 2(+c)$ is correct) ONLY FROM $v=\int-8+0.6 t \mathrm{~d} t$ OR $v=-\int 8-0.6 t \mathrm{~d} t$ and explicit $t=0, v=32.5$ so $c=32.5$
3	(ii)	$0.3 t^{2}-8 t+32.5=0$ $t=5$	M1 A1 [2]	Starts to solve 3 term QE, either the given ans in (i) or the candidate's answer in (i) with v set $=0$. Needs valid formula or factors which give 2 correct coefficients Accept as one of a pair only if the other value is $65 / 3=21.66 \ldots$.

Question		Answer	Marks	Guidance
3	(iii)	$\begin{aligned} & s=\int 0.3 t^{2}-8 t+32.5 \mathrm{~d} t \\ & s=0.3 t^{3} / 3-8 t^{2} / 2+32.5 t(+c) \\ & D=0.3 \times 5^{3} / 3-8 \times 5^{2} / 2+32.5 \times 5(+c) \\ & D=75 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Integrates an expression for velocity Accept omission of c Substitutes cv (smaller and +ve ans(ii)) or uses limits, []$_{0}^{\text {smaller }+ \text { vecv(ii) }}$ Explicit evaluation needed. Accept $+c$
4	(i)	$\begin{aligned} & (X=) 15-20 \cos 60,15-20 \sin 30 \\ & O R(Y=) 8-20 \cos 30,8-20 \sin 60 \\ & (X=) 5 \mathrm{~N} \\ & (Y=)-9.32 \mathrm{~N} \quad \text { (34.048.. if in rad mode) } \\ & (Y) \quad \text { (4.9149.. if in rad mode) }) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	Accept $(X=) 15+20 \cos 120,(Y=) 8+20 \cos 150$, and $\mathrm{R} \mathrm{A}=100^{\circ}$ Must be +ve Must be -ve. Allow 8-10 3
4	(ii)	$\begin{aligned} & R^{2}=(+/-9.32)^{2}+5^{2} \\ & R=10.6 \mathrm{~N} \\ & \tan \theta=(+/-9.32) / 5 \\ & \text { Angle }=152^{\circ} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 ft } \\ \text { M1 } \\ \text { A1 } \\ \text { [4] } \end{gathered}$	Uses Pythagoras on ans(i), neither component 8 or 15 $\sqrt{ }\left(X(\mathbf{i})^{2}+Y(\mathbf{i})^{2}\right)$ Finds any relevant angle with 8 N or 15 N , neither component 8 or 15 CAO, must be 3sf or better
4	(iii)	$\begin{aligned} & (\text { Greatest }=) 43 \mathrm{~N} \\ & (\text { Least }=) 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { [2] } \end{aligned}$	
5	(i)	$\begin{aligned} & S_{\text {dec }}=15 \times 4-1.75 \times 4^{2} / 2 \\ & S_{\text {dec }}=46 \\ & 100-46=15 T / 2+15(10-4-T) \quad(=15 \times 6-15 T / 2) \\ & 54=90-7.5 T \\ & T=4.8 \end{aligned}$	M1 A1 M1 A1ft A1 [5]	Or $v=15-1.75 \times 4$ and $s=(15+v) / 2 \times 4$ May be implied Any attempt at combined 3 stage distances being 100 Simplification not essential. ft cv($S_{\text {dec }}(\mathbf{i})$, numerical $)$
5	(ii)	$\begin{aligned} & V_{R}=d\left(3 t^{2}-0.2 t^{3}\right) / d t \\ & V_{R}=6 t-0.6 t^{2} \\ & V_{R}(5)\left(=6 \times 5-0.6 \times 5^{2}\right)=15 \mathrm{~ms}^{-1} \quad \text { AG } \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \\ & \hline \end{aligned}$	Attempt at differentiating S_{R} Accept $V_{R}=2 \times 3 t-3 \times 0.2 t^{2}$ Must show explicit substitution

Question		Answer	Marks	Guidance
5	(iii)	$\begin{aligned} & A_{R}=d\left(6 t-0.6 t^{2}\right) / d t \\ & 6-1.2 t=-1.75 \\ & t=6.46 \end{aligned}$	$\begin{gathered} \hline \text { M1* } \\ \text { D*M1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	Attempt at differentiating V_{R} Must be -1.75 or $1.2 t-6=1.75$ (i.e. employs deceleration)
5	(iv)	$\begin{aligned} & S_{R}(10)=3 \times 10^{2}-0.2 \times 10^{3} \\ & S_{R}(10)=100 \\ & \\ & O R \\ & 3 t^{2}-0.2 t^{3}=100 \\ & t=10 \text { which is how long the athlete takes to finish } \end{aligned}$	M1 A1 [2] M1 A1	Substitutes 10 into S_{R} formula Sets up and tries to solve equation for robot Needs comment about athlete or both finishing race in 10 s
6	(i)	$\begin{array}{\|l\|} \hline R=0.3 g \cos 30 \\ F r=0.15 \times 0.3 g \cos 30 \\ 0.3 a=-0.3 g \sin 30-0.15 \times 0.3 g \cos 30 \\ a=-6.17 \\ 0=4^{2}-2 \times 6.17 \mathrm{~s} \\ s=1.3(0) \mathrm{m} \end{array}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1ft } \\ {[6]} \end{gathered}$	$R=2.546 \mathrm{~N}$. May be shown on diagram $0.15 \times \operatorname{cv}(R), F r=0.382$ N2L, two forces inc. $0.3 g$ CorS30 and friction Accept positive value Using a from above $\mathrm{ft}(8 /\|\operatorname{cv}(a)\|)$ CorS30 means cos30 or sin30
6	(ii)	$\begin{aligned} & 0.3 a=0.3 g \sin 30-0.382 \\ & a=3.63 \\ & 1.3=3.63 t^{2} / 2 \\ & t=0.845 \mathrm{~s} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	N2L, diff. of two forces inc. $0.3 g$ CorS30 and friction Using $\operatorname{cv}(s(\mathbf{i}))$, and a not $a(\mathbf{i})$ nor 9.8 Rounds to 0.85 if 2 sig fig. CorS30 means cos30 or sin30
6	(iii)	$\begin{aligned} & V=3.63 \times 0.845 \text { OR } V=\sqrt{ }(2 \times 3.63 \times 1.3) \text { OR } V=2 \times 1.3 / 0.845 \\ & (V=3.07) \\ & \text { Mom change }=+/-(0.3 \times 4+0.3 \times 3.07) \\ & \text { Mom change }=+/-2.12 \mathrm{kgms}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	$\begin{aligned} & \operatorname{cv}(a(\mathbf{i i}) \times t(\mathbf{i i})) O R \operatorname{cv}(\sqrt{ } 2 \times a(\mathbf{i i}) \times s(\mathbf{i}) O R \operatorname{cv}(2 \times s(\mathbf{i}) / t(\mathbf{i i})), \\ & a(\mathbf{i i)} \text { not } a(\mathbf{i}) \text { nor } 9.8 \\ & +/-(0.3 \times 4+/-0.3 \times \operatorname{speed}(\text { return })), 0<\text { speed(return })<4, g \text { omitted } \end{aligned}$

Question			Answer	Marks	Guidance
7	(i)	(a)	$\begin{aligned} & 0.45 a=0.45 g-2.52 \\ & a=4.2 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$	N2L for R. 2 vertical forces. Accept $+/-0.45 a=0.45 g+/-2.52$ Accept -4.2
7	(i)	(b)	$\begin{aligned} & 0.05 \times 4.2=0.05 g+2.52-T \\ & T=0.05 \times 9.8+2.52-0.05 \times 4.2 \\ & T=2.8 \mathrm{~N} \end{aligned}$	M1 A1 ft A1 [3]	N2L for Q, 3 vertical forces, $0.05 \times 4.2=0.05 g+/-2.52+/-T$ accn not 9.8; 0.5 g is TWO vertical forces $(0.45 g+0.05 g)$ not MR $\mathrm{ft} \operatorname{cv}(a(\mathbf{i}))$. Any equivalent form of equation ACCEPT A COMBINED Q AND R METHOD $\begin{array}{ll} (0.45+0.05) \times 4.2=0.45 g+0.05 g+/-T & \text { M1 } \\ (0.45+0.05) \times 4.2=0.45 g+0.05 g-T & \text { A1ft } \\ T=2.8 \mathrm{~N} & \text { A1 } \end{array}$
7	(ii)		$\begin{aligned} & \pm 4.2 m=T-m g \\ & O R \\ & \pm 4.2=(0.05 g+0.45 g-m g) /(0.05+0.45+m) \\ & 4.2 m=2.8-m g \text { OR } 9.8 m+4.2 m=2.8 \\ & m=0.2 \end{aligned}$	M1 A1 ft A1 [3]	N2L for P, difference of 2 vertical forces, accn $\operatorname{cv}(a(\mathbf{i}))$ $\pm \mathrm{cv}(a(\mathbf{i}))=(\mathrm{wt} P+\mathrm{wt} Q-\mathrm{wt} R) /$ sum of masses $\mathrm{ft} \operatorname{cv}(T(\mathbf{i b}))$ Any equivalent form of equation with $\operatorname{cv}(\mathrm{a}(\mathrm{i}))$
7	(iii)		$\begin{aligned} & \hline \text { BEFORE R STRIKES SURFACE } \\ & v=4.2 \times 0.5 \\ & v=2.1 \\ & s=2.1^{2} /(2 \times 4.2)=4.2 \times 0.5^{2} / 2 \\ & \text { AFTER } R \text { STRIKES SURFACE } \\ & +/-0.2 a=T-0.2 g \quad \text { OR } \quad+/-0.05 a=0.05 g-T \\ & +/-0.2 a=T-0.2 g \quad \text { AND }+/-0.05 a=0.05 g-T \\ & \\ & a=+/-5.88 \\ & S=2.1^{2} /(2 \times 5.88) \\ & \text { TOTAL JOURNEY } \\ & \text { Distance }=(0.375+0.525)=0.9 \mathrm{~m} \end{aligned}$	$\begin{gathered} \text { M1* } \\ \text { A1 } \\ \text { M1 } \\ \\ \text { M1 } \\ \text { A1 } \\ \\ \text { A1 } \\ \text { D*M1 } \\ \\ \text { A1 } \\ {[8]} \\ \hline \end{gathered}$	Find Speed when R hits surface, using $a(\mathbf{i})$ Distance R falls (0.525 m). Accept $+/-4.2 \times 0.5^{2} / 2$ N2L for either P (with $\operatorname{cv}(m)$) or Q Correct equations for both P and Q OR combination $0.05 g(-T+T)-0.2 g=+/-(0.2 a+0.05 a) \mathrm{M} 1 \mathrm{~A} 1$ Distance Prises after R hits ground (0.375), a not $a(\mathbf{i})$ or 9.8

Question		Answer	Marks	Guidance
1	(i)	$\begin{aligned} & F^{2}=17^{2}-8^{2} \\ & F=15 \\ & \cos \alpha=8 / 17 \\ & \alpha=61.9^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	$F^{2}=17^{2}+/-8^{2}$ Exact accept 15.0 Correct method for angle between 8 N and 17 N forces Accept 62° from correct work
1	(ii)	$\begin{aligned} & E=17 \\ & \text { Angle }=118(.1)^{\circ} \text { OR } 242^{\circ}\left(241.9^{\circ}\right) \end{aligned}$	B1 B1 FT [2]	Exact $180-\operatorname{cv}(\alpha(\mathbf{i}))$ OR $180+\operatorname{cv}(\mathrm{a}(\mathbf{i}))$ Must be 3sf or better
2	(i)	$\begin{aligned} & v=7-0.4 \times 9.8 \\ & v=3.08 \mathrm{~ms}^{-1} \\ & s=7 \times 0.4-9.8 \times 0.4^{2} / 2 \\ & s=2.016 \mathrm{~m} \end{aligned}$ OR $\begin{aligned} & 3.08^{2}=7^{2}-2 \times 9.8 s \\ & s=2.016 \mathrm{~m} \end{aligned}$ OR $\begin{aligned} & v^{2}=7^{2}-2 \times 9.8 \times 2.016 \\ & v=3.08 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 M1 A1 [4] M1 A1 M1 A1	$v=7+/-0.4 \mathrm{~g}$ Exact, or correct to 3 sf from $\mathrm{g}=9.81(3.076)$ or 10 (3) $\mathrm{s}=7 \times 0.4+/-g 0.4^{2} / 2$ Exact but accept 2.02. $\mathrm{g}=9.81$ (2.0152) or $\mathrm{g}=10$ (2) $(\operatorname{cv}(v))^{2}=7^{2}+/-2 g s$ Exact but accept 2.02. $\mathrm{g}=9.81$ (2.0152) or $\mathrm{g}=10$ (2) $v^{2}=7^{2}+/-2 g(\mathrm{cv}(s))$ Exact or correct to 3 sf . Accept v=3.07 from s=2.02. From $\mathrm{g}=9.81$ (3.076 or 3.06 from $\mathrm{s}=2.02$) or 10 (3)
2	(ii)	$\begin{aligned} & \hline H= \pm 7^{2} /(2 \times 9.8)(= \pm 2.5) \\ & S= \pm\left(7 \times 0.9-1 / 2 \times 9.8 \times 0.9^{2}\right)(= \pm 2.331) \\ & D=2.5+(2.5-2.331) \\ & D=2.669 \mathrm{~m} \\ & \text { OR }\left(\mathrm{Using} t_{\mathrm{U}}=7 / 9.8=0.7143, t_{\mathrm{D}}=0.9-0.7143=0.1857 \mathrm{~s}\right) \\ & H= \pm\left(7 \mathrm{x} 0.7143-9.8 \times 0.7143^{2} / 2\right) \quad(= \pm 2.5) \\ & s_{\mathrm{D}}= \pm 9.8 \times 0.1857^{2} / 2(= \pm 0.169) \\ & D=2.5+0.169 \\ & D=2.669 \mathrm{~m} \end{aligned}$	B1 B1 M1 A1 [4] B1 B1 M1 A1	Greatest Height, g=9.81 (2.497 accept 2.5) g=10 (2.45) Height when $t=0.9, \mathrm{~g}=9.81(2.32695) \mathrm{g}=10(2.25)$ $2 \times$ greatest height $-\mathrm{S}(0.9)$ Exact but accept 2.67, g=9.81 (2.66705) g=10 (2.65) "OR" method uses distance from greatest height. OR $\pm 9.8 \times 0.7143^{2} / 2$. Gains B1 for H as above Equivalent to B1 for S as above Greatest height + Descent distance $\ll H$ Exact but accept 2.67, g=9.81 (2.66705) g=10 (2.65)

Question		Answer	Marks	Guidance			
3	(i)	$\begin{aligned} & (10-8) / 5=T_{\text {dec }} \text { OR } 8=10-5 T_{\text {dec }} \\ & t(=2-0.4)=1.6 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$	Attempt to find $T_{\text {dec }}= \pm 0.4= \pm 2 / 5$ Exact. Accept 1 3/5, not $8 / 5$, www			
3	(ii)	$\begin{aligned} & S_{B}=1 / 2 \times 8 \times 2 \\ & S_{A}=10 \times 1.6+1 / 2 \times(10+8) \times 0.4 \quad \text { OR } \\ & S_{A}=10 \times 2-1 / 2 \times(2-1.6) \times(10-8) \\ & S_{A}=19.6 \\ & A B=19.6-8+1 \\ & A B=12.6 \mathrm{~m} \end{aligned}$	B1 M1 A1 M1 A1 [5]	$S_{B}=8$ Using area under graph is distance (at least two parts) Complete method for S_{A} run in the first 2 s , using $\operatorname{cv}(t)$ Accept as $16+3.6$ or $20-0.40$, from $t=1.6$ (however obtained) $A B=+/-\left(S_{\mathrm{A}}-S_{\mathrm{B}}+/-1\right)$ Exact Or $A B=-12.6 \mathrm{~m}$			
4	(i)	$\begin{aligned} & F r=14 \cos 30 \\ & R=28-14 \sin 30 \\ & (14 \cos 30)=\mu(28-14 \sin 30) \\ & \mu=0.577 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	```12.1(24..) 21 12.1(24..)/21. Allow \|component of 14	/	vv(R)	for M1 0.577(35..)```
4	(ii)	$\begin{aligned} & \text { Mass }=28 / \mathrm{g} \\ & \text { Fr }=0.577 \times 28 \\ & (28 / 9.8) a= \pm 0.577 \times 28 \\ & a= \pm 5.66 \text { from exact } \mu, a= \pm 5.65 \text { from } \mu=0.577 \\ & 0=u^{2}-2 \times 5.66 \times 3.2 \\ & u=6.02 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [6] } \\ & \hline \end{aligned}$	2.857.. Award here if seen in (i) and used in (ii) 16.156 or 0.57735 .. x $28=16.1658$.. Award also for $\mathrm{cv}(m), m=28$. Must be only one force (friction), allow $\operatorname{Fr}(\mathrm{i})$. $\mathrm{g}=10(\pm 5.77)$ Valid signs with $\operatorname{cv}(5.66)$ Accept any answer rounding to 6.0 (inc 6.0, not 6) or 6.1 from $\mathrm{g}=10$			

Question		Answer	Marks	Guidance
5	(i)	$\begin{aligned} & T-0.4 g=0.4 \times 2.45 \\ & T=4.9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	N2L on P, two vertical forces, accept with $0.4 \times 2.45 g$ Correct terms and signs Exact, $\mathrm{g}=9.81$ (4.904, accept 4.9$) \mathrm{g}=10$ (4.98, not 5.0)
5	(ii)	$\begin{aligned} & m g-T= \pm 2.45 m \\ & m=2 / 3 \mathrm{~kg} \end{aligned}$ $\begin{aligned} & v=2.45 \times 0.3(=0.735) \\ & \text { Momentum }=(2 / 3) \times(2.45 \times 0.3) \\ & \text { Momentum loss }=0.49 \mathrm{kgms}^{-1} \end{aligned}$	M1 A1 FT B1 M1 A1 [5]	Correct terms (possible incorrect signs), and use of $\mathrm{cv}(\mathrm{T}(\mathrm{i}))$ $\mathrm{FT} \operatorname{cv}(T(\mathrm{i})) / 7.35, \mathrm{~g}=9.81(\mathrm{FT} \mathrm{cv}(T(\mathrm{i})) / 7.351=0.667) \mathrm{g}=10(\mathrm{FT}$ $\operatorname{cv}(T(\mathrm{i})) / 7.55=0.6596=0.66)$ This may be seen in (i). The M1A1 pair of marks may be awarded only in part (ii) when the candidate uses the value of m which was found in (i). Must be positive Accept $\pm . \quad \operatorname{cv}(m) \times \operatorname{cv}(v)$ Exact,. but accept any value which rounds to ± 0.490. $\mathrm{g}=9.81(0.49) \mathrm{g}=10(0.4848=0.485, \text { not } 0.48)$
5	(iii)	$\begin{aligned} & S=2.45 \times 0.3^{2} / 2 \\ & S= \pm 0.11(025) \end{aligned}$ OR $\begin{aligned} & S=(0+0.735) \times 0.3 / 2 \\ & S= \pm 0.11(025) \\ & 0=(2.45 \times 0.3)^{2} \pm 2 \times 9.8 s \\ & s= \pm 0.027(56 . .) \end{aligned}$ $\text { OR (using } t_{\mathrm{A}}=0.735 / 9.8=0.075 \text {) }$ $s=0.735 \times 0.075-9.8 \times 0.075^{2} / 2$ $s= \pm 0.027 \text { (56..) }$ Distance $=0.248 \mathrm{~m}$		Distance while Q descends. Watch for $s=v t-a t^{2} / 2$. If $v=0$, M0A0 M1 Using landing speed from (ii) A1 Distance P ascends while Q at rest, must use g May be implied, $\mathrm{g}=9.81$ (0.02753) $\mathrm{g}=10$ (0.0270) Calculating ascend time after string goes slack M1 Using candidate's values of speed and t_{A} to find $\pm s$ A1 May be implied $2 \times\|\operatorname{cv}(\mathrm{S})\|+\|\operatorname{cv}(s)\| . \text { Accept 0.25. } \mathrm{g}=9.81(0.248) \mathrm{g}=10(0.247511 . .)$

Question		Answer	Marks	Guidance
6	(i)	$\begin{aligned} & m g=6.4 \cos 40 \\ & m=0.5(00) \end{aligned}$	M1 A1 [2]	One cmpt of 6.4 N force (allow $6.4 \mathrm{x} \sin / \cos 40$ or 50), mg not resolved $\text { Accept 0.5, g=9.81 (0.49976.. }=0.5) \mathrm{g}=10(0.49026 . .=0.49)$
6	(ii)	$\begin{aligned} & H=6.4+6.4 \sin 40 \\ & \text { OR } \\ & 2 \times 6.4 \cos 25=0.5 g \cos 65+H \cos 25 \\ & H=10.5 \end{aligned}$	M1 A1 [2]	Resolves horizontally, all necessary terms (allow e.g. $6.4 \pm 6.4 \cos 40$) Resolves parallel to bisector of strings, inc cmpt weight Accept 11
6	(iii)	$\begin{aligned} & R=32 \cos 30-6.4 \sin 30 \\ & R=24.5 \\ & F r=32 \sin 30+6.4 \cos 30 \\ & F r=21.5 \\ & \mu=(32 \sin 30+6.4 \cos 30) /(32 \cos 30-6.4 \sin 30) \\ & \mu=0.879 \quad \text { AG } \end{aligned}$	M1 A1 M1 A1 M1 A1 [6]	Difference of Wt cmpt and Tension (not H) cmpt May be implied Sum of Wt cmpt and Tension (not H) cmpt May be implied Either Fr or R obtained from 2 term numerical expressions, in $\|\mathrm{Fr}\|$ $=\mu\|\mathrm{R}\|$
6	(iv)	```\(F_{\text {max }}=0.879 \times 32 \cos 30(=24.4 \mathrm{~N})\) Wt cmpt down slope \(=32 \sin 30(=16 \mathrm{~N})\) Remains in eqbm OR \(\pm m a=32 \sin 30-0.879 \times 32 \cos 30\) Finds acceleration Remains in eqbm OR angle of friction \(=\tan ^{-1} 0.879=41^{\circ}\) Slope is \(30^{\circ}\) Remains in eqbm```	$\begin{gathered} \text { B1* } \\ \mathrm{D}^{*} \mathrm{M} 1 \\ \text { A1 } \\ \text { [3] } \\ \mathrm{B}^{*} \\ \mathrm{D}^{*} \mathrm{M} 1 \\ \text { A1 } \\ \\ \text { B1* } \\ \mathrm{D}^{*} \mathrm{M} 1 \\ \text { A1 } \\ \hline \end{gathered}$	May be described simply as F or friction Finding Wt component down slope and comparing with friction Needs Wt cmpt $=16<F_{\text {max }}$ For friction calculation Sets up and solves N2L for a Needs a clearly in direction of friction (impossible) Must be explicit Values of angle of friction and slope stated in 6(iv)

Question			Answer	Marks	Guidance
7	(i)		$\begin{aligned} & \text { Before mom }=0.2 \times 4+0.3 \times 2.5 \\ & 0.2 \times 4+0.3 \times 2.5=(0.2+0.3) v \\ & v=3.1 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	Accept with g Accept with g Exact. Award if g used and cancelled.
7	(ii)	(a)	$V_{0}=3.1$	$\begin{gathered} \text { B1 FT } \\ \text { [1] } \end{gathered}$	FT cv(v(i))
7	(ii)	(b)	$\begin{aligned} & s=\int 3.1-3 t^{2} \mathrm{~d} t \\ & s=3.1 t-3 t^{3} / 3(+c) \\ & \mathrm{CR}=\left[3.1 t-t^{3}\right]_{0}^{0.3} \\ & \mathrm{CR}=0.903 \mathrm{~m} \end{aligned}$	$\begin{gathered} \text { M1* } \\ \text { A1 FT } \\ \text { D*M1 } \\ \text { A1 } \\ \text { [4] } \end{gathered}$	Uses integration of velocity(t) FT $\operatorname{cv}(v(\mathrm{i}))$ or $\operatorname{cv}\left(V_{0}(\mathrm{iia})\right)$ Uses their $s(0.3)$. Award if $+c$ never shown or assumed $=0$ Ans not given, so explicit substitution not needed. Allow 0.90, not 0.9
7	(ii)	(c)	$\begin{aligned} & a=d\left(V_{0}-3 t^{2}\right) / d t \\ & a=-6 \times 0.3 \\ & a=-1.8 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{gathered} \text { M1* } \\ \mathrm{D}^{*} \mathrm{M} 1 \\ \text { A1 } \\ \text { [3] } \\ \hline \end{gathered}$	Uses differentiation of v Substitutes $\mathrm{t}=0.3$ (no other value acceptable) Exact. Must be negative (accept deceleration is -1.8). Award if V_{0} wrong but not if V_{0} omitted.
	(iii)		Mom $C=(0.2+0.3)\left(3.1-3 \times 0.3^{2}\right)$ Conservation of momentum used, no g $\begin{aligned} & (0.2+0.3)\left(3.1-3 \times 0.3^{2}\right)=1.5 v-0.5 v \\ & v=1.415 \mathrm{~ms}^{-1} \end{aligned}$	B1 M1 A1FT A1 [4]	1.415 Before momentum must be numerical, after momentum needs two terms in v (accept 2 v or v) FT cv(before momentum) Exact. Accept 1.41 or 1.42 .

Question		Answer	Marks	Guidance
1		$\begin{aligned} & X=14-5 \\ & R^{2}=(14-5)^{2}+12^{2} \\ & R=15 \mathrm{~N} \\ & \tan \theta=(14-5) / 12 \\ & \theta=36.9^{\circ} \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[5]} \end{aligned}$	Or 5-14 Pythagoras, R as hypotenuse, 3 squared terms Any correct trig, angle between 12 and R targetted. Accept 37, 037
2	(i)	$\begin{align*} & v=\mathrm{d}\left(t^{4}-2 t^{3}+5\right) / \mathrm{d} t \\ & v=4 \times 1.5^{3}-6 \times 1.5^{2} \\ & v=0 \tag{AG} \end{align*}$	$\begin{gathered} \text { M1* } \\ \text { D*M1 }^{*} \text { M1 } \\ \text { A1 } \\ \text { [3] } \end{gathered}$	Differentiates displacement, one wrong term max, ignore +c Substitutes $t=1.5$ in $v(t)$ OR solves $4 t^{3}-6 t^{2}=0$ for a + ve root $0+\mathrm{c}$ is A 0 unless c is discarded
2	(ii)	$\begin{aligned} & a=\mathrm{d}\left(4 t^{3}-6 t^{2}\right) / \mathrm{d} t \\ & a(1.5)=12 \times 1.5^{2}-12 \times 1.5 \\ & a=9 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$ AG	$\begin{gathered} \text { M1* } \\ \mathrm{D}^{*} \mathrm{M} 1 \\ \text { A1 } \\ {[3]} \end{gathered}$	Differentiates velocity, one wrong term max, ignore +c Substitutes $t=1.5$ in $a(t)$ OR solves $12 t^{2}-12 t=9$ for a + ve root $9+\mathrm{c}$ is A 0 unless c is discarded
3	(i)	$\begin{aligned} & T \mathrm{CorS} 20=0.25 g \mathrm{CorS30} \\ & T \cos 20=0.25 g \sin 30 \\ & T=1.3(0) \end{aligned}$	M1 A1 A1 [3]	Equates cmpt T and cmpt wt // plane (doubt, see diagram and/or (ii)) 1.225
3	(ii)	$\begin{aligned} & R+/-T \operatorname{CorS} 20=+/-0.25 g C o r S 30 \\ & R+1.3 \sin 20=0.25 g \cos 30 \\ & R=1.68 \mathrm{~N} \end{aligned}$	M1 A1 ft A1 [3]	Resolves perp plane, accept letter T $\mathrm{ft}(\mathrm{cv}(T))$
3	(iii)	$\begin{aligned} & (m) \operatorname{accn}=+/-(m) 9.8 \sin 30 \\ & a=+/-4.9 \\ & u=+/-9.8 \sin 30 \times 0.4 \\ & u=1.96 \end{aligned}$	$\begin{gathered} \text { M1* } \\ \text { A1 } \\ \text { D*M1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	N2L with single force a cmpt wt (accept cos) Must be +ve (accept loss of - sign)

Question		Answer	Marks	Guidance
4	(i)	$\begin{aligned} & (t-3)(t-6)=0 \\ & t=3,6 \end{aligned}$	M1 A1 [2]	Solve 3 term QE, 2 correct coefficients if factorising, or using formula $9+/-\sqrt{9} / 2$ "By inspection" both values M1A1, one value M0A0
4	(ii)	$\begin{aligned} & v=\int\left(t^{2}-9 t+18\right) \mathrm{d} t \\ & v=t^{3} / 3-9 t^{2} / 2+18 t(+\mathrm{c}) \\ & 3^{3} / 3-9 \times 3^{2} / 2+18 \times 3+c=9 \\ & (v=)-13.5 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{gathered} \text { M1* } \\ \text { A1 } \\ \mathrm{D}^{*} \mathrm{M} 1 \\ \text { A1 } \\ {[4]} \\ \hline \end{gathered}$	Attempts integration of $a(t) \mathrm{d} t$, maximum one wrong term Accept omission of $+c$ Uses $v(3)=9$ Must be negative, and goes beyond $\mathrm{c}=-13.5$
4	(iii)	$v(1)=1 / 3-9 / 2+18-13.5=0.333$ Changed sign so direction of motion has changed	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$	Finds $v(1)(=1 / 3)$ Accurate values $(\mathrm{v}(0)=-13.5, \mathrm{v}(0.5)=-5.58, \mathrm{v}(0.9)=-0.702)$
5	(i)	$\begin{aligned} & 1.4^{2}=2 \times a \times 0.2 \\ & O R \\ & 0.2=(0+1.4) t / 2 \text { and } 1.4=0+a t \\ & a=4.9 \mathrm{~m} \mathrm{~s}^{-2} \\ & 0.3 g-T=+/-0.3 \times 4.9 \\ & T=1.47 \mathrm{~N} \end{aligned}$	M1 A1 M1 A1 [4]	Any use of $a=g$ is M0 $t=2 / 7$ hence $1.4=a \times 2 / 7$ N2L diff of weight and tension. Any use of $a=g$ is M0
5	(ii)	$\begin{aligned} & +/-4.9 m=1.47-m g \\ & 4.9 m=1.47-m g \\ & m=0.1 \end{aligned}$	M1 A1ft A1 [3]	N2L for Q using values from (i), a not g; accept $a=g \Delta \mathrm{M} / \Sigma \mathrm{M}$ Diff $\mathrm{cv}(\mathrm{T})$ and mg correct way round; $\mathrm{ft} \mathrm{cv}(T, a)$ $4.9=g(0.3-m) /(0.3+m) \mathrm{M} 1 \mathrm{~A} 1 ; \operatorname{ftcv}(a)$
5	(iii)	$\begin{aligned} & 1.4^{2}=2 g s \\ & s=0.1 \\ & H=0.2+0.2+0.1 \\ & H=0.5 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Accn $=g$ may be implied (eg $H=0.3$) BoD sign uncertainty Needs 0.2 twice

Question			Answer	Marks	Guidance
5	(iv)	(a)	$\begin{aligned} & \text { Tension }=0.5 g+2 \times 1.47 \\ & \text { Tension }=7.84 \mathrm{~N} \end{aligned}$	M1 A1 [2]	
5	(iv)	(b)	Tension $(=0.5 g)=4.9 \mathrm{~N}$	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	
6	(i)		$\begin{aligned} & 0.3 \times 4-0.2 \times 5=+/-(0.3+0.2) v \\ & v=0.4 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1 A1 A1 [3]	Cons of momentum, no g^{*}, common v "after" term $0.3 \times 4+0.2 \times 5=+/-(0.3+0.2) v$ is M1A0A0 Must be positive *Allow g if fully cancelled in first line BOD
6	(ii)	(a)	$\begin{aligned} & \mathrm{Q} \text { (or P at rest) } \\ & 0.3 \mathrm{x} 4-0.2 \mathrm{x} 5=0.2 v \\ & v=1 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	If P moves, allow 0.3vwhen considering M1 Cons of momentum, no g^{*}, one "after" term $0.3 \mathrm{x} 4+0.2 \mathrm{x} 5=0.2 v$ is M1A0A0 *Allow g if fully cancelled in first line BOD
6	(ii)	(b)	$\begin{aligned} & 4 t+5 t=3.6 \\ & t=0.4 \\ & x_{\mathrm{Q}}=5 \mathrm{x} 0.4(=2) \\ & \mathrm{T}=(2 / 1=) 2 \mathrm{~s} \\ & O R \\ & (\text { Time }=) \\ & x / 5=(3.6-x) / 4 \\ & x=2 \mathrm{~m} \\ & T=2 / 1=2 \mathrm{~s} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Or $9 t=3.6$, Or both $3.6-x=4 t$ and $x=5 t$ Finds initial Q distance. $3.6 \times 5 /(4+5)$ is M1A1A1 Equates pre-collision times x is distance Q travels before collision
6	(ii)	(c)		B1 B1 B1 B1 [4]	One horizontal, +ve v intercept One horizontal, -ve v intercept, terminates at same t One along t-axis, starts at same t as + ve line ends, label P One horizontal above t-axis, starts at same t as -ve line ends. (Ignore any values put on graphs)

Question			Answer	Marks	Guidance
7	(i)		$\begin{aligned} & \mathrm{Fr}=0.2 \times 0.4 g \cos 45 \\ & 0.4 a=0.4 g \sin 45-0.554(37 . .) \quad(=2.21748 . .) \\ & a=5.54(37 . .) \\ & v^{2}=5^{2}+2 \times 5.54 \times 2 \\ & v=6.87 \mathrm{~m} \mathrm{~s}^{-1} \\ & 6.87=5+5.54 t \\ & t=0.337 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[7]} \end{aligned}$	$\mathrm{Fr}=0.554(37 . .)$ N2L, their Fr value and cmpt wt, opposite signs May be implied $v^{2}=u^{2}+2 a s, a$ is not $0.2 g .0<a<g$. Consistent signs $2=5 t+5.54 t^{2} / 2, a \text { is not } 0.2 g .0<a<g$
7	(ii)	(a)	$\begin{aligned} & +/-0.4 a=-0.4 g \sin 45-0.55437 \quad(=3.3262 . .) \\ & a=+/-8.31(557 . .) \\ & 0^{2}=5^{2}-2 \times 8.32 \times s \\ & s=1.5(0)(\text { so does not reach B) } \\ & O R \\ & v^{2}=5^{2}-2 \times 8.32 \times 2 \\ & v^{2}=- \text { ve }(-8.28) \text { so does not reach B } \\ & \hline \end{aligned}$	M1 A1 A1 [3] A1	N2L, Fr and cmpt wt same sign (accept +ve) Accept + ve value $5^{2}=2 \times 8.32 \times s, a$ is not g or $0.2 g$. Consistent signs. cso Some comment on impossibility
7	(ii)	(b)	$\begin{aligned} & v^{2}=2 \times 5.54(37) \times 1.5 \\ & v=+/-4.08 \\ & \text { Momentum change }=+/-0.4(4.08+5) \\ & \text { Change }=+/-3.63 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{gathered} \text { M1* } \\ \text { A1 } \\ \text { D*M1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	No A1 to be given for $s=1.5$ (if last A1 not given in iia), a is not g or $0.2 g$ or their a in 7iia allow $a>g$ Must be a sum of 5 and a speed meaningfully less than 5

Question		Answer	Marks	Guidance
1	(i)	$\begin{aligned} & 0.3 u+0.6 \times 0.8=(0.3+0.6) \times 1 \\ & u=1.4 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	Momentum for Q / R, no g, at least 3 correct terms NB 0.48 in "before" from 0.8×0.6; not $1.5 \times 0.1+1.1 \times 0.3(\mathrm{~A} 0)$
1	(ii)	$\begin{aligned} & 0.1 \times 1.5+0.3 \times 1.1= \pm 0.1 v+0.3 \times 1.4 \\ & v=0.6 \end{aligned}$ Momentum change $= \pm 0.09 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ OR Momentum change $Q= \pm 0.3(1.4-1.1)= \pm 0.09$ Momentum change $P= \pm 0.09$ OR $0.1 \times 1.5+0.3 \times 1.1+0.6 \times 0.8=(\pm) 0.1 v+0.9(\times 1)$ Momentum change $P= \pm 0.09$	M1 A1 A1 $[3]$ M1A1 A1 M1A1 A1	$P, Q+$ ve "before", allow P-ve "after". Accept cv (1.4) Velocity of P, will be -ve if $-0.1 v$ in momentum equation, accept $v= \pm 0.6$ Tolerate loss of - sign if "small - large" has + ve answer Change for P is the change for Q Overall equation From $\pm(0.9 \times 1-0.3 \times 1.1-0.6 \times 0.8)$
2	(i)	$\begin{aligned} & U=0.5 g \quad \text { OR } \quad U-0.5 g=0 \\ & U=4.9 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1 A1 [2]	Consider descent $O R$ ascent. $v=u+a t$ with consistent signs for non-zero terms. $U+0.5 g=0$ is M0 hence A0. Allow use of 4.9 without penalty in (ii) and (iii) even if $0 / 2$ here.
2	(ii)	$\begin{aligned} & U^{2}= \pm 2 g s \\ & 4.9^{2}= \pm 2 \times 9.8 \times s \\ & s=1.225 \mathrm{~m} \end{aligned}$ OR $\begin{aligned} & s= \pm\left(u t \pm g t^{2} / 2\right) \text { OR } \quad s= \pm g t^{2} / 2 \\ & s= \pm\left(4.9 \times 0.5-g \times 0.5^{2} / 2\right) \text { OR } s= \pm g \times 0.5^{2} / 2 \\ & s=1.225 \mathrm{~m} \end{aligned}$ OR $\begin{aligned} & s= \pm U t / 2 \\ & s= \pm 4.9 \times 0.5 / 2 \\ & s=1.225 \mathrm{~m} \end{aligned}$	M1 A1 A1 [3] M1 A1 A1 M1 A1 A1	$v^{2}=u^{2}+2 a s$ +ve, 49/40, 1.22 or 1.23 BoD loss of - sign in final answer Rise to/fall from greatest height. $S= \pm\left(v t \pm g \frac{t^{2}}{2}\right)$ is similar. +ve, 1.22 or 1.23 BoD loss of - sign in final answer $s=(u+v) t / 2$ +ve, 1.22 or 1.23 BoD loss of - sign in final answer

Question			Answer	Marks	Guidance
2	(iii)		$\begin{aligned} & v^{2}=2 g(s \pm 0.539) \\ & v^{2}=2 \times 9.8 \times(0.539+1.225) \\ & v=5.88 \mathrm{~ms}^{-1} \end{aligned}$ OR $\begin{aligned} & v^{2}=u^{2} \pm 2 g \times 0.539 \\ & v^{2}=4.9^{2}+2 g \times 0.539 \\ & v=5.88 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1ft A1 [3] M1 A1ft A1	Overall descent, zero initial speed ft cv (1.225), tolerate sign change from (ii) Exact, isw rounding of 5.88 to 5.9 if 5.88 seen Motion from projection level down, non-zero initial speed ft cv (4.9), tolerate sign change from (i) Exact, isw rounding of 5.88 to 5.9 if 5.88 seen
3	(i)	(a)	$\begin{aligned} & \tan \theta=8 / 12 \\ & \theta=33.7^{\circ} \end{aligned}$ $O R$ correct trig using ans (i)(b) $\sin \theta=8 / \mathrm{cv}(14.4) \text { or } \cos \theta=12 / \mathrm{cv}(14.4)$ $\theta=33.7^{\circ}$	M1 A1 [2] M1 A1	Must be correct angle. Must be correct angle A1 needs $2 / 2$ in (i)(b). $\cos \theta=12 / 14.4$ gives $\theta=33.6$ A1
3	(i)	(b)	$\begin{aligned} & R^{2}=8^{2}+12^{2} \\ & R=14.4 \mathrm{~N} \end{aligned}$	M1 A1 [2]	Pythagoras, 3 squared terms, R as hypotenuse Accept $4 \sqrt{ } 13$ not $\sqrt{ }$ 208
3	(ii)	(a)	$\begin{aligned} & 12 \operatorname{CorS} \theta= \pm 8 \\ & 12 \sin \theta=8 \\ & \theta=41.8^{\circ} \end{aligned}$ OR correct trig using (ii)(b) $12 \operatorname{CorS} \theta=\operatorname{cv}(8.94), \operatorname{cv}(8.94) \tan \theta=8$, or $8 \tan \theta=\operatorname{cv}(8.94)$ $12 \cos \theta=8.94$ or $8.94 \tan \theta=8$ $\theta=41.8^{\circ}$	M1 A1 A1 [3] M1 A1 A1	Either angle. If other angle is targeted, this A1 requires " $90-$ ". $O R$ $12 \cos \theta=8.94,8.94 \tan \theta=8$. cao Either angle If other angle is targeted, this A1 requires "90 -" Both A1 marks require $2 / 2$ in (ii)(b)
3	(ii)	(b)	$\begin{aligned} & R=12 \cos 41.8 \\ & R=8.94 \mathrm{~N} \end{aligned}$	M1 A1 [2]	Using candidate's angle from 3iia. $O R R^{2}=12^{2}-8^{2}, R^{2}+8^{2}=12^{2}$ Accept 8.9 or $8.95,4 \sqrt{ } 5$, not 9 or 9.0 not $\sqrt{ } 80$. For A1, the trig solution requires $3 / 3$ in (ii)(a)

Question		Answer	Marks	Guidance
4	(i)	$\begin{aligned} & v=18+2.4 \times 5 \\ & v=30 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	$v=u+a t$
4	(ii)	```Distance while accelerating \(=(18+30) \times 5 / 2\) Distance at constant speed \(=30(t-5)\) \(30(t-5)+(18+30) \times 5 / 2=300\) \(t=11\) OR Distance while accelerating \(=(18+30) \times 5 / 2 \quad(=120)\) Distance at constant speed \(=300-\mathrm{cv}(120)\) Time at constant speed \(=\frac{(300-\mathrm{cv}(120))}{30}\) Time at constant speed \(=6\) \(t=11\) OR Distance \(=30 t\) Distance \(=(30-18) \times 5 / 2\) \(30 t-(30-18) \times 5 / 2=300\) \(t=11\) OR Distance while accelerating \(=(18+30) \times 5 / 2\) Distance at constant speed \(=30(t-5)\) Distance at constant speed \(=300-120=30(t-5)\) \(t=11\)```	B1 B1 M1 A1 A1 [5] B1 M1 B1 A1 A1 B1 B1 M1A1 A1 B1 B1 M1A1 A1	Or $30 \times 5-(30-18) \times 5 / 2$ etc $=120$, or $45+75$. Numerical. Tolerate 30t. Algebraic. Adds their areas to get 300 $30 T=300-120,30 t+45+75=300$, etc Or $30 \times 5-(30-18) \times 5 / 2$ etc $=120$, or $45+75$. Numerical. Subtracts their area from 300 Equivalent to "distance at constant speed algebraic" Rectangle, comprising 300 + area of "missing triangle" "Missing triangle", to be removed Subtracts their areas to get 300 120 May be implied. Tolerate 30t. Algebraic. OR $180=30 t \mathrm{M} 1, \quad t=6 \mathrm{~A} 1$

Question		Answer	Marks	Guidance
4	(iii)	$\begin{aligned} & S=30^{2} /(2 \times(\pm 6)) \\ & S=75 \\ & \text { Distance }=375 \mathrm{~m} \\ & O R \\ & T=30 / 6 \text { and } S=30 T / 2 \\ & S=75 \\ & \text { Distance }=375 \mathrm{~m} \end{aligned}$	M1 A1 A1ft [3] M1 A1 A1ft	$\begin{aligned} & 0^{2}=30^{2} \pm 2 \times 6 S, \text { with candidate’s } v(\mathrm{i}) \\ & 300+\operatorname{cv}(75) \end{aligned}$ Accept $T=5$ if no working or from 30/-6, with candidate's $v(\mathrm{i})$ $300+c v(75)$
5	(i)	$\begin{aligned} & d=3 u+4 \times 3^{2} / 2(=3 u+18) \\ & 2 d=5 u+4 \times 5^{2} / 2(=5 u+50) \\ & \\ & 6 u+36=5 u+50 \\ & u=14 \mathrm{~ms}^{-1} \\ & 2 d=5 \times 14+4 \times 5^{2} / 2 \\ & \text { OR } d=3 \times 14+18 \text { OR } d=2 \times 14+32 \\ & \text { Length }=120 \mathrm{~m} \end{aligned}$	B1 B1 M1 A1 M1 A1 [6]	OR $d=(5-3)(u+3 \times 4)+4 \times 2^{2} / 2$ for lower half of slope $(d=2 u+32)$ Attempts to solve 2 SE in u and d, at least one with 3 terms. Tolerate u, d switch to x, y for solving reasons Substitutes in 3 term eqn, starts suvat again, or solves SEs again. If u is negative, allow substitution of + ve equivalent.
5	(ii)	$\begin{aligned} & 4(m)=(m) g \sin \theta \\ & \theta=24.1^{\circ} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	Mass may be omitted on both sides. Allow 4(m) = $(m) g \cos \theta$
5	(iii)	$\begin{aligned} & 6=m g \cos 24.1 \\ & m=0.671 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$	Or $6=m g \sin 24.1$, uses numerical answer referring to (ii) www
6	(i)	$\begin{aligned} & V=d\left(0.06 t^{3}-0.45 t^{2}-0.24 t\right) / \mathrm{d} t \\ & V=0.18 t^{2}-0.9 t-0.24 \\ & A=\mathrm{d}\left(0.18 t^{2}-0.9 t-0.24\right) / \mathrm{d} t \\ & A=0.36 t-0.9 \\ & V(0)=-0.24 \mathrm{~m} \mathrm{~s}^{-1} \\ & A(0)=-0.9 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	M1 A1 M1 A1 A1 A1 ft [6]	Differentiates displacement Accept with $+c$, unsimplified coefficients Differentiates velocity Accept with $+c$, unsimplified coefficients cao, if coeffs in $V(t)$ wrong A0 $\mathrm{ft} \operatorname{cv}(-0.9)$, the constant in expression for A. Tolerate wrong coeff t

Question		Answer	Marks	Guidance
6	(ii)	$\begin{aligned} & \text { Solves } A=0 \text { for } t \\ & 0.36 t-0.9=0 \\ & t=2.5 \\ & x(2.5)=-2.475 \\ & \text { Speed }=\|v(2.5)\|=1.365 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [5] } \end{aligned}$	Not if $\mathrm{A}(t)$ includes $+c$ in this section Final answer must be negative. Accept -2.47 and -2.48 . Final answer must be positive. Accept 1.36 or 1.37.
6	(iii)	$\begin{aligned} & \text { Uses } v=0 \\ & 0.18 t^{2}-0.9 t-0.24=0 \\ & t=5.25 \mathrm{~s} \end{aligned}$	M1 A1ft A1 [3]	Forms and offers solution of 3 term QE using $\mathrm{cv}(V(\mathrm{i})$) Must select +ve answer explicitly. Accept 5.3, not 5.2
7	(i)	$\begin{aligned} & 0.5 g-T= \pm 0.5 \times 1.4 \\ & 0.5 g-T=0.5 \times 1.4 \\ & T=4.2 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	N2L for Q, difference of 2 force terms
7	(ii)	$\begin{aligned} & 4.2-F-0.6 g \sin 30=0.6 \times 1.4 O R \\ & 4.2-\mu R-0.6 g \sin 30=0.6 \times 1.4 \\ & \text { Friction }(=4.2-0.6 g \sin 30-0.6 \times 1.4)=0.42 \\ & \text { Reaction }=0.6 g \cos 30 \\ & 0.42=0.6 g \cos 30 \mu O R \mu=0.42 / 0.6 g \cos 30 \\ & \mu=0.0825 \end{aligned}$	M1 A1 B1 M1 A1 [5]	N2L for $P, 3$ forces including a component of weight of P and $\mathrm{cv}(4.2)$ May be implied May be implied $F=\mu R, R$ a component of weight of P and F has been found using a component of the weight of P. Tolerate $F-$ ve and $\|-\mathrm{veF}\|$. Accept 0.082 , not 0.083 .
7	(iii)	$\begin{aligned} & R=(0.6 g+7) \cos 30 \\ & R=11.2 \\ & \mathrm{Fr}=7 \sin 30-0.42 \\ & \mathrm{Fr}=3.08 \\ & \mu=3.08 / 11.2 \\ & \\ & \mu=0.276 \\ & \mu \geq 0.276 \end{aligned}$	M1 A1 M1* A1 D*M1 A1 B1 ft $[7]$	Includes weight cmpts of P and B, allow $7 g$ 11.154... May be implied Wt cmpt B (allow 7 g) - Fr(ii) must be difference. May be implied. Both quantities +ve, F and R both from 2 term equations Value of μ, accept 0.28 , disregard inequality sign ft cv (μ found in (iii)) direction of greater than or equal to sign; isw any work relating to an upper limit for μ

Question		Answer	Marks	Guidance	
1	(i)	$\begin{aligned} & v^{2}=3.5^{2}+2 g \times 5 \\ & v=10.5 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Uses $v^{2}=3.5^{2}+/-2 g 5$	Accept -3.5^{2} for (-3.5) ${ }^{2}$ etc
	(ii)	$\begin{aligned} & 5=0.87 u-g \times 0.87^{2} / 2 \\ & u=10.0 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	$+/-5=0.87 u+/-g 0.87^{2} / 2$	May come from $s=v t-g t^{2} / 2$
	(iii)	$\begin{aligned} & \text { Change }=0.2 \times 10.5+0.2 \times 10 \\ & \text { Change }=4.1(0) \mathrm{kg} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1 A1 [2]	Or +/- 0.2(Ans(i) +/- Ans(ii)) It is OK get -4.1 from correct work	
2	(i)	$\begin{aligned} & 2.5 \sin \theta=2.4 \\ & \theta=73.7 \\ & 2.5 \cos \theta=F \\ & F=0.7 \\ & O R \\ & 2.4^{2}+F^{2}=2.5^{2} \text { or } F^{2}=2.5^{2}-2.4^{2} \\ & F=0.7 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [4] } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$2.5 \operatorname{CorS} \theta=2.4$ Accept 74 $F=2.5 \operatorname{SorC} \theta$, opposite to that above Exact, but allow 0.702 (3 sf) $\theta=73.7$	$\begin{aligned} & 2.5 \cos \theta=2.4 \quad \text { M1 hence } \\ & \theta=16.3 \text { A0 } \\ & 2.5 \sin \theta=F \quad \text { M1 hence } \\ & F=0.7(00) \text { A1 SC } \end{aligned}$ F can then be used to find θ
	(ii)	$\begin{aligned} & 2.4=0.2 a \\ & a=12 \mathrm{~ms}^{-2} \\ & \text { Bearing (0)90} \text { OR } \\ & \text { "To right"," opposite old } 2.4 \mathrm{~N} \text { force" etc } \end{aligned}$	M1 A1 B1 [3]	N2L, Any horizontal force other than $F, 0.7$, 2.5 (Do not treat removing/using 2.5 as a MR) 12.0 from $2.5 \sin 73.7 / 0.2$ Angle value other than exactly 90° or $0^{\circ} \mathrm{B} 0$ Allow B1 for force dirn, if accn not found	Including g, automatically M0 Horizontal is B0 (ambiguous)

Question		Answer	Marks	Guidance	
3	(i)	$3 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$		MR (0.6t $\left.{ }^{3}+3\right)$, award B1 here
	(ii)	$\begin{aligned} & x=\int\left(0.6 t^{2}+3\right) \mathrm{d} t \\ & x=0.6 t^{3} / 3+3 t(+c) \end{aligned}$ Substitutes 1.5 in expression for x $x(1.5)=5.175 \mathrm{~m}$	$\begin{gathered} \hline \text { M1* } \\ \text { A1 } \\ \text { D*M1 }^{*} \text { M1 } \\ \text { A1 } \\ {[4]} \\ \hline \end{gathered}$	Integrates v Accept with/without $+c$ Needs integration and 2 terms in t Only without +c. Accept 5.17, 5.18	$\operatorname{MR}\left(0.6 t^{3}+3\right)$ $0.6 t^{4} / 4+3 \mathrm{t} \quad$ is A 0 MR 5.26 only gets A1ft
	(iii)	$\begin{aligned} & a=\mathrm{d}\left(0.6 t^{2}+3\right) / \mathrm{d} t \\ & 6=2 \times 0.6 t \\ & v(5)=18 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{gathered} \text { M1* } \\ \text { D*M1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	Differentiates v Plus attempt to solve $a(t)=6$	$\begin{aligned} & \text { MR }\left(0.6 t^{3}+3\right) \text { gives } t=1.82(57 . .) \\ & \mathrm{v}(1.8257 . .)=6.65 \quad(3 \mathrm{sf}) \end{aligned}$
4	(i)	Calculation for both "before" Momentum (magnitudes) Compares both terms without arithmetic error Shows direction of after total momentum conflicts with the before velocity/momentum of Q	M1 A1* D*A1 [3]	Must not include g Vector nature of momentum by word or sign (+/-)	Explicit reference to after momentum or conservation of momentum essential.
	(ii)	$\begin{aligned} & \mathrm{TMB}=+/-(0.2 \times 4+0.3 \times(-2)) \\ & 0.8-0.6=0.2 v+0.3 v \\ & v=0.4 \mathrm{~m} \mathrm{~s}^{-1} \\ & 0.8-0.6=-0.2 v+0.3 v \\ & v=2 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	B1 M1 A1 M1 A1 [5]	Accept inclusion of g Allow if g included in all terms Not awarded if g included Allow if g included in all terms Not awarded if g included	LHS must be difference for both M1 marks SC $0.8-0.6=0.2 v-0.3 v$ M1 Speed $=2$ and the direction of motion of Q is reversed A1

Question			Answer	Marks	Guidance	
5	(i)		$\begin{aligned} & 5 /(T-3)=-4 \text { OR } 5 /(3-T)=4 \\ & T=1.75 \end{aligned}$	M1 A1 [2]	$\begin{aligned} & \text { Accept verification, } 4 \times(3-1.75) \mathrm{M} 1 \\ & =5 \text { A1 OR 5/(3-1.75) M1 }=4 \mathrm{~A} 1 \end{aligned}$	
	(ii)	(a)	$-4 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$		
		(b)	$4 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$		
		(c)	$4 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$		
	(iii)		$\begin{aligned} & 2 \times(-) 4,2 \times 4,(1 \times) 4 \\ & d=(-) 5+(-) 8+8+4 \\ & d=25 \mathrm{~m} \end{aligned}$	$\begin{gathered} \hline \text { M1* } \\ \text { D*M1 } \\ \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	Calculates any one unknown distance Adds 5 and " 3 other" distances or -5 and " 3 other" displacements Correctly comes from $4 \mathrm{x}(1.25+4+1)$	Allow if only one calc. correct Note $t=5$ to $t=9, t=5$ to $t=10$ etc, may be one term
	(iv)		$\begin{align*} & v=\mathrm{d}\left(20 t-t^{2}-96\right) / \mathrm{d} t \\ & v=20-2 t \\ & 20-2 t=-4 \\ & t=12 \text { (ignore any solutions less than } 10 \text {) } \tag{4} \end{align*}$	$\begin{gathered} \text { M1* } \\ \text { A1 } \\ \mathrm{D}^{*} \mathrm{M} 1 \\ \text { A1 } \end{gathered}$	Differentiates x, accept $20-t$ as "differentiation" $20-2 t+c=-4$ is DM0 Only from $20-2 t=-4$. This answer can arise fortuitously from solving $20 t-t^{2}-96=0$.	SC Verifying that $t=12$ gives $v=-4$ can gain final M1A1 (A special case of trial and refinement)

Question			Answer	Marks	Guidance	
6	(i)		$\begin{aligned} & 3=8 \mu \\ & \mu=0.375 \end{aligned}$	M1 A1 [2]	Uses $F=\mu R$, Allow R is 8 or $8 g, F r=3$ only 3/8 (fraction), not $3 \div 8$ (division)	
	(ii)		$\begin{aligned} & C^{2}=3^{2}+8^{2} \\ & C=8.54 \mathrm{~N} \\ & \tan \theta=3 / 8 \text { or } \tan \theta=8 / 3 \\ & \theta=20.6^{\circ} \text { with vertical or } 69.4^{\circ} \text { with } \\ & \text { horizontal } \end{aligned}$	M1 A1 M1 A1 [4]	Uses Pythagoras with 3 and 8 or $8 g$ Accept 8.5 or $\sqrt{ } 73$ Uses tan with 3 and 8 or $8 g$ Accept 21 or 69, direction clear by words or diagram.	Or CorS with answer for C isw work after correct angle magnitude found
	(iii)	(a)	$\begin{aligned} & T(\cos 0)-3=+/-3 \\ & T=6 \end{aligned}$	M1 A1 [2]	$T(\cos 0)-3=0 \text { is } \mathrm{M} 0$ Answer alone is sufficient for M1A1	$T \cos 0-3=-3$ assumes Fr direction has not changed
	(iii)	(b)	$\begin{aligned} & R=+/-(8-T \times \operatorname{SorC30}) \\ & R=8-T \sin 30 \\ & F r=+/-(T \times \operatorname{CorS3} 3-3) \\ & F r=T \cos 30-3 \\ & 0.375=(T \cos 30-3) /(8-T \sin 30) \\ & T=5.70 \end{aligned}$ OR Alternative for last 4 marks $\begin{aligned} & F r=0.375(8-T \sin 30) \\ & F r=+/-(T \times \operatorname{CorS30}-3) \\ & F r=T \cos 30-3 \\ & 0.375(8-T \sin 30)=T \cos 30-3 \\ & T=5.70 \end{aligned}$	M1 A1 M1 A1 M1 A1 [6] M1 A1 M1 A1	Accept $8 g$ with cmpt T oe Accept 3 with cmpt T, not $T \times$ CorS30 $+/-3=0$ oe Accept use of μ from (i). For forming an equation in T alone. Accept use of μ from (i). oe For forming an equation in T alone.	(This is required also in the SC case) SC Does not allow for change in direction of Friction $\begin{aligned} & F r=3-T \cos 30 \quad \text { A1 } \\ & 0.375=(3-T \cos 30) /(8-T \sin 30) \quad \text { M1 } \end{aligned}$ $T=0$ A0 SC (Alternative) $F r=0.375(8-T \sin 30)$ $F r=+/-(T \times \text { CorS30 }-3) \quad \text { M1 }$ $F r=3-T \cos 30 \quad \mathrm{~A} 1$ $0.375(8-T \sin 30)=(3-T \cos 30) \mathrm{M} 1$ $T=0$ A0

Question		$\begin{array}{\|l} \hline s=0.6 \times 2+0.9 \times 2^{2} / 2 \\ s=3 \\ A B=6 \mathrm{~m} \end{array}$	MarksM1A1A1$[3]$	Guidance	
7	(i)			Uses $s=u t+a t^{2} / 2, u \neq 0, a \neq g$ or g CorS30	
	(ii)	$\begin{aligned} & V_{M}=0.6+0.9 \times 2 O R \\ & V_{M}^{2}=0.6^{2}+2 \mathrm{x} 0.9 \times 3 \\ & a=g \sin 30 \\ & V_{B}^{2}=2.4^{2}+2(9.8 \sin 30) \times 3 \\ & V_{B}=5.93 \mathrm{~ms}^{-1} \end{aligned}$	B1 B1 M1 A1 [4]	2.4 5.76 4.9 Uses $v^{2}=u^{2}+2 a s, u \neq 0$ or $0.6, a \neq g$ or 0.9 , $s \neq A B(\mathrm{i})$ Accept 5.9	Award if found in (i) and used in (ii) If $A B(\mathrm{i})=3$, allow its use for final M1A1
	(iii)	$\begin{aligned} & 0.3 \times 0.9=0.3 g \sin 30-T \\ & T=1.2 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	N2L, $0.3 \times 0.9=+/-(0.3 g C o r S 30-T)$	$a=0.9$ essential, $m=0.3$ but if 0.4 used in (iii) AND 0.3 used in (iv), treat as a single mis-read
	(iv)	$\begin{aligned} & 0.4 \times 0.9=0.4 g \sin 30+1.2-F r \\ & F r=2.8 \\ & R=0.4 g \cos 30 \\ & \mu=2.8 / 3.39 \\ & \mu=0.825 \end{aligned}$	$\begin{gathered} \hline \text { M1* } \\ \text { A1ft } \\ \\ \text { A1 } \\ \text { B1 } \\ \text { D*M1 }^{*} \text { M1 } \\ \text { A1 } \\ {[6]} \\ \hline \end{gathered}$	N2L, 3 forces inc +/-(0. $4 g$ CorS30 + T) $\mathrm{ft} \mathrm{cv}(T)$ in (iii) May be shown by mu calculation May be implied, 3.39(48...) $2.8=3.39(48) \mu$, both forces positive Accept 0.82 , not 0.83 or 0.826	$a=0.9$ or value used in (iii), $m=0.4$ but if 0.4 used in (iii) AND 0.3 used in (iv), treat as a single mis-read Awarded only if M1 forN2L equation

